
A Marshalled Data Format for Pointers
in Relocatable Data Blocks

Nick Vrvilo Lechen Yu Vivek Sarkar

Rice University, Houston, Texas, USA

{nick.vrvilo,lechen.yu,vsarkar}@rice.edu

Abstract

As future computing hardware progresses towards extreme-scale
technology, new challenges arise for addressing heterogeneous
compute and memory resources, for providing application resilience
in the presence of more frequent failures, and for working within
strict energy constraints. While C++ has gained popularity in recent
years within the HPC community, some concepts of object-oriented
program design may be at odds with the techniques we use to address
the challenges of extreme-scale computing. In this work, we focus on
the challenges related to using aggregate data structures that include
pointer values within a programming model where the runtime may
frequently relocate data, and traditional serialization techniques are
not practical. We propose and evaluate a marshalled encoding for
relocatable data blocks, and present a C++ library and other tools
to simplify the work of the application programmer developing
new applications or porting existing applications to such emerging
programming models.

CCS Concepts • Information systems → Data encoding and
canonicalization; • Computing methodologies → Distributed
computing methodologies

Keywords Open Community Runtime, data block relocation, one-
sided communication, marshalling, serialization

1. Introduction

In the past, much of the HPC software infrastructure coming from
the U.S. Department of Energy laboratories has been focused on
C or Fortran; however, there is currently an obvious shift towards
new programming models. With several U.S. national labs heavily
investing resources into new C++-based programming models
(RAJA at Lawrence Livermore [11], Kokkos at Sandia [7], and
Legion at Los Alamos [3]), it seems inevitable that C++ will become
the de facto language for high-performance computing projects.

At the same time, we are seeing a shift in programming models
and runtime design as new challenges in scaling arise in the tran-
sition up to petascale, as well as in resource-limited extreme-scale
computing environments, ranging from exascale systems to low-
energy embedded devices. Many of these challenges center around
synchronization, resilience, and complex memory hierarchies [2].
One-sided communication is quickly gaining popularity as a way

to decrease synchronization overheads in distributed systems [22].
We are also seeing restrictions in computation and data models,
which are leveraged to provide stronger resilience guarantees [14].
As heterogeneous hardware with dedicated accelerators become
more common, runtimes also need to be able to relocate data to
different memory subsystems to accommodate accelerator hardware
restrictions or take advantage of locality [2]. However, the ability to
transparently migrate data (whether as a form of one-sided commu-
nication, or to support resilience, locality, and other goals) can be
hindered by embedded pointers bound to an object’s current loca-
tion in memory, which are common in object-oriented C++ software
systems that make heavy use of aggregate objects.

The key contributions presented in this paper include the follow-
ing. We present a marshalled encoding for relocatable data blocks,
and describe an algorithm for rewriting C++ class definitions to
use our proposed encoding. We present a C++ library and other
tools to simplify the work of the application programmer developing
new applications or porting existing applications to emerging pro-
gramming models, with our work specifically focusing on the Open
Community Runtime (OCR) programming model [17]. Finally, we
provide an experimental analysis of the overheads associated with
our marshalled data encoding.

The remainder of the paper is as follows. Section 2 provides back-
ground on data blocks, serialization, and related concepts. Section 3
gives an overview of our proposed marshalling solution. Section 4
classifies the types of pointer use observed in our assumed program-
ming model. Sections 5–8 describe how to use our solution when
porting existing code or developing a new application. Section 9 is
our experimental analysis to quantify the overhead associated with
our proposed marshalled data format. Finally, in sections 10–12,
we discuss related work, possible future research directions, and our
conclusions on this work.

2. Background

As previously discussed, we expect concepts like one-sided commu-
nication and transparent data relocation to become more important
in future HPC software systems. We now discuss these ideas and
their interactions with aggregate C++ objects. We also discuss why
traditional serialization techniques do not apply well in this context.

2.1 One-sided Communication

One-sided communication is the default method of sharing data in
PGAS languages like UPC [26] and models like OpenSHMEM [5].
Rather than using paired send/receive operations to transmit data
between processes, data in remote memory is accessed directly via
put and get operations. One-sided communication is becoming more
common in popular distributed-computing paradigms, and as we
move towards exascale systems (where the overhead of traditional
point-to-point communication is aggravated by the scale of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISMM’17, June 18, 2017, Barcelona, Spain
ACM. 978-1-4503-5044-0/17/06...$15.00
http://dx.doi.org/10.1145/3092255.3092276

25

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3156685.3092276&domain=pdf&date_stamp=2017-06-18

Datablock X @ 0x38a8a90!

· · ·!

int i @ 0x38a8aa0!

· · ·!

int * p = 0x892e660!
· · ·!

Datablock X @ 0x892e650 !

· · ·!

int i @ 0x892e660 !

· · ·!

int * p = 0x892e660!
· · ·!

Node !
A !

Node !
B!

??? !

Figure 1: Example of pointer invalidation after migration of a
datablock. The datablock X is initialized on node A, containing
an integer i and pointer p that is set to the address of i. After the
datablock X is migrated to node B, the base address of the datablock
has changed, causing the absolute address stored in p to no longer
correspond with the address of i.

machine), we anticipate that this trend to continue. Even the MPI
standard, which is typically associated with two-sided send/receive-
style communication, has added extensive support for one-sided
communication. In fact, it is now possible to implement a PGAS
programming model like OpenSHMEM entirely in terms of the
one-sided communication API extensions in the MPI-3 standard [9].

Currently, both one-sided and two-sided communication are only
compatible with contiguous objects that do not contain internal

pointers.1 While the MPI and SHMEM APIs have support for
sending non-contiguous bytes from an array or struct, there is
still the underlying assumption that these bytes are read from a
contiguous object in memory. To the best of our knowledge, no
industry-standard HPC communication framework directly supports

transfer of aggregate objects2 through one-sided communication or
transparently-managed data blocks.

2.2 Data Block Migration

Emerging parallel-computing runtimes, such as Realm [23] and
OCR [14] also transparently manage data to improve scheduling
and locality, e.g., when gathering inputs from remote nodes before
starting a computation. Transparently supporting recovery by mi-
grating tasks and data after a component failure, or redistributing
workloads to adapt to a dynamic energy budget are other reasons
the runtime might need to migrate data. Thus, the runtime needs the
ability to transparently relocate objects.

In OCR, the application programmer cannot assume that a
datablock will have the same base address when it is accessed by
two separate tasks. For example, the runtime may move a datablock
to a remote node and then move it back again, but at a new base
address. The runtime may also choose to migrate a datablock to a
different portion of the address space within a single shared-memory
domain. For example, the machine might have a high-performance
scratchpad, and through online profiling, the runtime may decide
to migrate a heavily used datablock into the scratchpad memory.
Since the base address of a datablock can only be assumed constant
for the duration of the currently executing task, any pointers stored

1 We use the term pointer to refer to both C-style explicit pointers (e.g.,
int *p), as well as references in C++ (e.g., int &r).
2 We use the term aggregate objects to refer to objects containing pointers
to aggregated data. The aggregated data may also include aggregate objects,
with nested pointers to more data.

within a datablock should be considered invalid as soon as the task
finishes executing.3 Figure 1 illustrates an example where an error
is introduced when a datablock is migrated to a remote node. When
the datablock is moved, its base address changes, causing the value
stored in the intra-datablock pointer to no longer correspond with
the address of the target integer; instead, it now points off to an
arbitrary memory position.

The requirement for transparently-migratable data is not limited
to distributed systems, or even to runtimes with online profiling.
Many hardware accelerators, such as GPUs and FPGAs, have their
own dedicated memory and discrete address spaces. Naïvely copying
blocks of data that contain pointers between main memory and
dedicated accelerator memory may also lead to program errors.

2.3 Serialization

When copying aggregate C++ objects across memories, the current
best-practice is to employ serialization. This involves packing the
objects into a contiguous buffer at the source, and then unpacking
(i.e., reconstructing) the objects at the destination. Note that for ob-
jects containing pointers, this typically means transitively applying
serialization to all pointed-to objects. This can be problematic if
an object X contains multiple references to some other object Y,
as it may result in multiple copies of Y at the destination unless
care is taken to track unique object pointers. Some popular serializa-
tion frameworks, such as Boost.Serialization [21], do the necessary
bookkeeping to automatically handle duplicate pointers; in contrast,
libraries like Cereal [4] eschew this additional bookkeeping in favor
of higher throughput.

Serialization puts a burden on both the programmer (providing

functions to pack and unpack4) and on the runtime (invoking the
pack/unpack functions every time an object is relocated); neverthe-
less, the need to support migrating an object to another memory
(e.g., a remote node or a hard disk) often makes serialization an
essential feature, making the extra effort and overhead unavoidable.

However, there is a fundamental problem with using serialization
in combination with one-sided communication: Due to the lack of
explicit coordination with the remote process, there is no straight-
forward way to trigger invocation of the deserialization code for
an object at the destination. A similar problem presents in runtimes
like OCR, which lack callback hooks for object pre/post migration
processing, again precluding the use of traditional serialization. The
purpose of this work is to enable support for C++ programs using
aggregate objects within a distributed-memory OCR application.

3. Overview of Our Solution

In the case that traditional serialization is impractical or unavailable,

we propose using a marshalled5 data format—which is directly
usable by the application code—as the primary representation for

3 In OCR, since all data that persists between tasks must be stored in
a datablock, all valid pointers must point into datablocks. One possible
exception is for function pointers, which point at code rather than data.
4 Note that the burden of providing explicit implementations of serialization
functions for user-defined types only exists in “classic” languages (e.g., C,
C++ and Fortran) because they support neither run-time nor compile-time
reflection. Languages supporting reflection can (and do) provide generic or
automatically-generated serialization code. Even the modern “lower-level”
languages (e.g., Rust) have support to auto-generate serialization code for
most user-defined data types. However, custom serialization allows the
programmer to inject semantic-aware optimizations, e.g., compression.
5 While the terms serialize and marshal are sometimes used interchangeably,
we draw a traditional distinction between these two concepts. To serialize

an object means to transform it into a contiguous byte stream, which can
then be sent somewhere else, and eventually deserialized into an equivalent
object. Marshalling is a more general term used for data representation
transformations in memory, inclusive of (but not restricted to) serialization.

26

1 struct Node {

2 int value;

3 Node *left;

4 Node *right;

5 };

6

7 struct Tree {

8 Node *root;

9 // ... methods ...

10 };

Listing 1: A simple tree data structure using native pointers.

objects. (As discussed in section 2, two such motivating cases are
one-sided communication and the OCR data model.) The application
data is partitioned into discrete, fixed-sized datablocks. Intra-block
pointers are encoded as relative offsets. Inter-block pointers are
encoded with both a global handle for the target datablock, as well
as the relative offset to the target data from the start of that datablock.

A critical requirement for our approach, of course, is correctness.
We present a C++ library for creating and managing datablock-
marshalled objects, and an algorithm, which we have implemented
using the Clang LibTooling framework [13], for conservatively trans-
forming persisted aggregate objects’ definitions into our marshalled
representation. We also present a set of possible optimizations to
the output of our conservative transformation, and provide a set of
run-time sanity checks to augment the correctness-checking process
when applying these less-general optimizations.

Since the overarching goal of this work is to improve the
productivity of an application programmer writing code for an OCR-
like runtime, our assumptions are based on the OCR programming
model. The assumptions are as follows:

1. All persisting data must be stored within a runtime-managed
datablock. We define persisting data as any data that may be
accessed from more than one task.

2. The runtime is free to relocate a datablock after it is released by
a task, but a datablock cannot move while currently in use by
some task.

3. The contents of datablocks are opaque to the runtime.6

4. Each datablock has a corresponding Globally Unique ID (GUID),
which is a valid global handle for the datablock regardless of
where it currently resides in memory.

We can discuss these assumptions more concretely in terms of
the simple tree data structure definition shown in listing 1. If a single
instance of the tree data structure is accessed by more than one task,
then it must be allocated within one or more datablocks. This is a
consequence of #1, because between tasks, the runtime may relocate
those datablocks, as per #2. Since the underlying runtime has no
access to type information on the contents of datablocks, as per
#3, the contents of datablocks are copied byte-by-byte (as done by
the standard memcpy function) to the destination when moved, such
that the bitwise representation of our tree data structure remains
the same before and after migration. However, since the destination
address most likely does not match the source address, we should
assume this opaque data transfer invalidates the pointer values of

A traditional example where the term marshal (but not serialize) would be
appropriate is when transforming an object for compatibility with a foreign-
function interface.
6 We do not require information on which data block entries contain pointers,
as is required by GC maps for strongly typed languages like Java that
include automatic memory management. Instead, memory is managed at
the granularity of datablocks either manually or semi-automatically via
reference-counting techniques.

the fields declared on lines 3, 4 and 8. Although the base address
of the datablock containing our tree root may change several times
throughout the program execution, as a consequence of #4, each task
can still request access to that datablock via the datablock’s GUID,
since the runtime maintains a mapping to the current location.

4. Pointer Usage in Tasks and Datablocks

Following the trend described in section 1, many simulation frame-
works are being developed in C++ and are targeting exascale com-
puting. An example of one such framework is Tempest [24, 25], a
hydrodynamics simulation kernel developed entirely in C++, heavily
using standard C++ idioms and aggregate data types. Many object-
oriented C++ codebases—like Tempest—use several persistent
aggregate objects. Based on our past experience with a port of a
subset of the Tempest framework onto OCR,7 we know that the
presence of pointers in aggregate objects (used extensively through-
out the framework’s API) is a major complication of porting an
object-oriented C++ framework onto a datablock-based memory
system, like that in OCR. More specifically, the assumptions we
are making regarding memory (enumerated in section 3) have three
non-trivial consequences for C++ applications targeting the OCR
programming model:

1. Objects that persist across task boundaries cannot contain native

pointer types,8 since any pointer value is immediately invalidated
if the target datablock is migrated to a new base address.

2. C++ code cannot make use of the built-in new and delete oper-
ators for dynamic memory management. The built-in new and
delete operators in C++ simply delegate to the standard malloc

and free functions for memory allocation, which would place
new objects at arbitrary locations in the heap, whereas OCR re-

quires that all persisting objects be allocated within a datablock.9

Instead, we require a custom allocation API for managing place-
ment of new C++ objects within existing OCR datablocks. We
do not see this as a major limitation since best practices in
object-oriented programming often recommend the use of fac-
tory methods rather than using new directly. For example, we
see a similar pattern with the usage of std::make_shared in
C++11. Note that temporary objects that do not persist across
multiple tasks need not be placed within datablocks, and thus
can be allocated normally.

3. Due to the allocation descriptions already described, using C++
standard template library containers (e.g., std::vector) will not
work unless alternative implementations are provided that both
avoid native pointers and use datablock-based allocation.

The base address of an acquired datablock must remain constant
until it is released by the acquiring task; therefore, it is both legal
and desirable to use native (position-dependent) pointers as local
variables within a task, since the lifetime of that pointer is bounded
by the task’s lifetime. Only pointers that persist across multiple tasks
must use a position-independent encoding. In the following two
subsections, we describe the two additional classes of pointer use in
OCR application code, and introduce a new position-independent
representation for each class of pointer. These position-independent

7 Tempest is a very large simulation framework (with over 70k lines of code),
and the port to OCR is still a work in progress.
8 Note that task-local variables are permitted to contain native pointers, but
their lifetimes are limited by task boundaries.
9 Note that using linker tricks to replace the default malloc and free

implementations with something datablock-aware is not an acceptable
solution since the underlying runtime may use these functions internally
and depend on their standard behavior—as is the case in the flagship
implementation of OCR.

27

pointer objects can legally persist within OCR datablocks, and can
simplify the process of porting object-oriented C++ code to OCR.

4.1 Intra-datablock Pointers

In the case when a pointer must address an object that resides within
the same datablock as the pointer itself, then the pointer will always
be at the same relative location with regard to the target object,
regardless of the base address of the datablock; therefore, a relative
offset can be used to position-independently encode that pointer.
Note that this offset is calculated relative to the base address of the
pointer-object itself, not the base address of the datablock.

We define the RelPtr template class to represent this kind of
pointer. We assume that the size of a relative offset is less than
or equal to that of a native pointer; hence, a RelPtr replacing

a native pointer implies no space overhead.10 Note that in C++
we are able to overload all operators that are typically used with
native pointers, making the substitution of RelPtr objects for native

pointers almost11 transparent to the application programmer. A
simplified version of the RelPtr class definition is shown in listing 2
for reference. While it is possible to use a RelPtr to address a non-
persisting object (e.g., an object stored on a task’s stack), it is always
preferable to use a native pointer in such a case.

4.2 Inter-datablock Pointers

If the pointer object and its target object may reside in distinct
datablocks, then it is not possible to find the target object using
a constant offset from the pointer. This is due to the fact that
either of the two datablocks may be arbitrarily moved by the
runtime, changing their relative positions. Instead, we encode the
position-independent pointer as a pair: the offset of the target object
from the base address of its datablock, plus the GUID of that
datablock. Assuming that the target datablock has been acquired by
the current task, converting between the GUID and the base address

is straightforward operation.12 Calculating the target object’s base
address using the offset is trivial.

We define the BasedPtr template class to represent this kind
of pointer. As with the RelPtr class, we overload the relevant
operators to make using BasedPtr objects as simple as possible.
While the implementation details are not quite as simple as with
RelPtr, it is still possible to make BasedPtr operations appear the
same as native pointer operations in the application code—albeit
with some additional overhead (both in space and in computation
time). A simplified version of the BasedPtr class definition is shown
in listing 3 for reference.

Note that a BasedPtr is a valid substitute for any pointer into a
datablock. This implies a simple, conservative process for taking
an OCR application that illegally persists native pointers within
datablocks, and correcting those violations: Replace every native
pointer that is persisted in a datablock with a BasedPtr. The details
of this process are covered in section 6.

10 While a RelPtr introduces no additional memory footprint within a
datablock, the additional template methods for the RelPtr class may increase
the global code footprint.
11 We say almost transparent because there are a few edge cases where the
application programmer may need to modify existing code; e.g., when a user-
defined implicit type conversion was applied to the original pointer value
that the compiler will not automatically apply to the new pointer object.
12 Translating a datablock’s GUID to its base address (or vice versa) is
not directly supported by the current OCR API; however, tracking this
mapping for each of a task’s acquired datablocks is just a matter of a
little extra bookkeeping in our C++ code that wraps OCR’s standard C-
language API. Since OCR already tracks all of a task’s acquired datablocks,
extending the existing internal bookkeeping to support this translation is
very straightforward.

1 template <typename T>

2 class RelPtr {

3 public:

4 constexpr RelPtr() : offset_(1) {}

5 RelPtr(const RelPtr &other) { set(other); }

6 RelPtr(const T *other) { set(other); }

7

8 RelPtr<T> &operator=(const RelPtr &other) {

9 set(other); return *this; }

10 RelPtr<T> &operator=(const T *other) {

11 set(other); return *this; }

12

13 T &operator*() const { return *get(); }

14 T *operator->() const { return get(); }

15 operator T *() const { return get(); }

16 bool operator!() const { return offset_ == 0; }

17 bool operator==(const RelPtr &other) const {

18 return get() == other.get(); }

19 /* ... other pointer operators ... */

20

21 private:

22 ptrdiff_t offset_;

23 ptrdiff_t base_ptr() const {

24 return (ptrdiff_t)(this); }

25

26 void set(const RelPtr &other) { set(other.get()); }

27 void set(const T *other) {

28 if (other == nullptr) offset_ = 0;

29 else offset_ = (ptrdiff_t)(other) - base_ptr(); }

30 T *get() const {

31 assert(offset_ != 1);

32 if (offset_ == 0) return nullptr;

33 else return (T*)(base_ptr() + offset_); }

34 };

Listing 2: C++ definition of the RelPtr class, simplified for inclu-
sion in this source listing. Please see the ocxxr repository for the
full source code of the RelPtr class.

1 template <typename T>

2 class BasedPtr {

3 public:

4 constexpr BasedPtr()

5 : target_guid_(ERROR_GUID), offset_(0) {}

6 BasedPtr(ocrGuid_t target, ptrdiff_t offset)

7 : target_guid_(target), offset_(offset) {}

8 /* ... other constructors and operators ... */

9

10 private:

11 ocrGuid_t target_guid_;

12 ptrdiff_t offset_;

13 ptrdiff_t base_ptr() const {

14 return (ptrdiff_t)(this); }

15

16 void set(const BasedPtr &other) {

17 target_guid_ = other.target_guid_;

18 offset_ = other.offset_; }

19 void set(const T *other) {

20 GuidOffsetForAddress(other, this,

21 &target_guid_, &offset_); }

22 T *get() const {

23 if (ocrGuidIsNull(target_guid_)) return nullptr;

24 else return (T *)(AddressForGuid(target_guid_)

25 + offset_); } }

26 };

Listing 3: C++ definition of the BasedPtr class, simplified for
inclusion in this source listing. Please see the ocxxr repository
for the full source code of the BasedPtr class. The AddressForGuid
and GuidOffsetForAddress routines refer to the GUID–pointer
conversion operations discussed in section 4.2.

28

5. Additional C++ API Support

To better facilitate the use of C++ code with OCR, we have built the
constructs described in this paper into a more general C++ library,
which additionally provides C++-friendly wrappers for all existing
OCR functions. We call the library ocxxr, which is a portmanteau
of OCR and C++ (CXX). The library contains the RelPtr and
BasedPtr classes described in section 4, as well as an API for using
datablocks as the backing memory for an arena-based allocator.
The library uses modern C++11 constructs. The allocation API
mimics the style of the interface for allocating memory with an
associated shared pointer, and thus should be intuitive to C++11-
savvy application programmers. E.g., the expression new T(x,y)

can be rewritten as arena.New<T>(x,y) to allocate the object inside
the given datablock arena, or New<T>(x,y) to use an implicit arena
set via an earlier API call.

Our C++ wrappers for the C-language OCR API functions
further improve the C++ integration, e.g., by adding template type
parameters to eliminate C-style void* “generic” types and provide
better static typing. One example of this is the TaskBuilder<F>

template type, which allows construction of task instances that will
run a target function, where F is the target function’s type signature,
and all arguments passed to the task instance are checked against the
argument types in F. We also leverage this extra type information in
our pointer conversion algorithm, described in the next section.

Although ocxxr provides a limited set of utility classes and func-
tions, the primary goal is to provide a foundational framework, en-
abling development of more complex object-oriented C++ libraries

for OCR. The current version of the library is available on GitHub.13

6. Pointer Conversion Algorithm

To ease the process of porting legacy C++ code to the OCR model,
we present a tool for automatic identification of native pointers
that are persisted in OCR datablocks, and a process for conversion
to position-independent representation. Our tool is built on Clang
LibTooling [13], which provides a framework for automatic C++
source code analysis and source-to-source translation.

The transformation described here hinges on the following two
key observations:

1. The BasedPtr class can legally replace any native pointer that
addresses an object residing within a datablock.

2. Any data that persists across multiple tasks must be contained
within an aggregate object that is passed as an argument to an
OCR task. In other words, it is possible to read a now-invalid
pointer value if and only if that pointer is embedded within
a datablock, and some task has an input dependence on that
datablock.

The basic pseudocode for this transformation is given in al-
gorithms 1 and 2. There are many other subtle details in the full
algorithm that are not covered in the pseudocode. For example, it is
not possible to directly replace a C++ reference type on a field with a
corresponding BasedPtr type. Instead, a new field of type BasedPtr

is created with a unique name, and the original field is replaced with
a method that returns the original reference type. All uses of the
original field are then transformed into method calls by appending
a pair of empty parentheses to the original field name. In contrast,
since BasedPtr overloads all pointer-related operators, uses of a
transformed pointer-type field work transparently. Another example
is handling class subtypes, which requires processing the classes in
the inheritance hierarchy. For simplicity, we cover only the core con-

13 https://github.com/DaoWen/ocxxr/tree/ismm17

1 Subroutine RewritePersistingPointers()

Input: Source program that has been partially ported to

ocxxr, but where some native pointers are

included in persistent data.

Result: All persisted native pointers in the input source

program have been replaced with

position-independent pointer objects.

2 Let Builders be the set of all TaskBuilder<F> type

instances in the input program.

3 foreach B ∈ Builders do

4 Let ArgTypes be the set of all datablock

dependence types specified in the task function

signature of F in B.

5 foreach τ ∈ ArgTypes do

6 Let τ ′ be the base type of τ .

7 if τ ′ is a class type then

8 call RewritePointersInClass(τ ′
)

9 else τ is a non-aggregate type.

10 No rewrite is necessary for type τ .

Algorithm 1: Top-level routine for whole-program persisting-
pointer rewriting.

1 Subroutine RewritePointersInClass()

Input: A class type τ .

Result: The class type τ has been rewritten to τ ′, such

that τ ′ contains no persistent-dependent pointers.

This property is transitive to all aggregate

members of τ ′.

/* Calls to this subroutine must be memoized to

prevent infinite recursion on

mutually-recursive class types */

2 Let Members be the set of all field members in τ .

3 foreach M ∈ Members do

4 Let φ be the type of M .

5 Let φ′ be the base type of φ.

/* Rewrite pointer fields in the class */

6 if φ is a pointer type φ′
∗ then

7 Rewrite M from type φ′
∗ to BasedPtr<φ′

>.

/* Recursively handle nested class types */

8 if φ′ is a class type then

9 call RewritePointersInClass(φ′
)

Algorithm 2: Class-level routine of the persisting-pointer rewrit-
ing algorithm. Called in the inner-loop routine of algorithm 1.
Recursively handles the rewriting of nested class definitions.

29

https://github.com/DaoWen/ocxxr/tree/ismm17

cepts of the transformation in this paper, and refer interested readers

to the source code14 for the full details of the implementation.

6.1 Description of the Algorithm

The top-level transformation routine is described in algorithm 1. We
assume that the input program has already been partially translated
to the OCR programming model using the ocxxr library; however,
the input program may still store native pointers in datablocks,
meaning the program likely only run in shared memory under the
assumption that datablocks are never migrated.

We use only the types found in task arguments (i.e., the data
types of the input dependence datablocks) as the root set for this
transformation. This helps us avoid processing transient datablocks
with a single-task duration (essentially being used as task-local
scratch space), and avoid unnecessarily coercing the associated
types into the position-independent encoding. We find and iterate
through our root set of types in lines 2–4).

The base type τ ′ of τ (defined on line 6 of algorithm 1) cor-
responds to the target type of a pointer, or the element type of an
array; e.g., the base type of int* is int, the base type of float[10]
is float, and the base type of Node*(*)[] is Node. The conditional
call in the inner loop (on lines 7–8) starts the recursive processing

of each of the class types in our root set. Since only class types15 can
contain aggregate object pointers, no other types require rewriting.

The subroutine call in the inner-loop of algorithm 1 is described
in algorithm 2. This subroutine transforms the specified class to
remove native pointers, and it is also recursively applied to any
class types referenced in the fields of that class. Lines 2–4 iterate
through each of the target class’s fields. Lines 6–7 transform fields
with native pointer types into position-independent BasedPtr object
types, which are safe to store within an OCR datablock. Finally,
lines 8–9 recursively apply this subroutine to any new class types.

As described in the comment above line 2, calls to the Rewrite-

PointersInClass routine must be memoized in order to avoid po-
tential infinite recursion. Since the number of TaskBuilder variable
declarations in the input program must be finite, and the total num-
ber of class types referenced in any typeable C++ program must
also be finite, we can conclude that this algorithm will always ter-
minate. The overall computational complexity of the algorithm is
linear in the template-expanded size of the input program. Note
that if a declaration of a TaskBuilder<F> type appears inside of
a templatized function or method, then the type F may be defined
in terms of other type parameters, and each concrete type instance
must be processed. This is analogous to running the algorithm on the
fully template-expanded source code. While further optimizations
to this transformation are possible, we believe the current approach
is acceptable since the algorithm is relatively simple, yet the overall
complexity is no worse than that of the code generation necessary
to produce the application binary.

6.2 Example of Program Transformation

We now walk through an example of running our pointer conversion
algorithm on a simple ocxxr program, shown in listing 4.

1. First, we query for all instances of the TaskBuilder<F> type
declared in the input program. We find an instance on line 16 and
another on line 26. For the first instance, F is the type signature
of the function SubTask.

2. The SubTask function has two parameters, with types int and
Arena<Tree>, respectively. The int type is ignored since it’s a
primitive type. However, Arena is a datablock type containing

14 https://github.com/DaoWen/ocxxr-ptr-xform
15 We consider class and struct to be synonymous here.

1 struct Node {

2 int value;

3 Node *left;

4 Node *right;

5 };

6

7 struct Tree {

8 Node *root;

9 // ... methods ...

10 };

11

12 void SubTask(int i, Arena<Tree> tree) {

13 Node *tree_root = tree->root;

14 if (i < 10) {

15 // ... do something with tree_root ...

16 TaskBuilder<decltype(SubTask)> builder = /* ... */;

17 builder.CreateTask(i+1, tree);

18 } else {

19 Shutdown();

20 }

21 }

22

23 void MainTask() {

24 Arena<Tree> tree = Arena<Tree>::Create(ARENA_SIZE);

25 // ... set up tree ...

26 TaskBuilder<decltype(SubTask)> builder = /* ... */;

27 builder.CreateTask(0, tree);

28 }

Listing 4: Simple tree in ocxxr using native pointers, using the tree
data structure originally from listing 1.

an object of type Tree as its root element. Since Tree is a class
type, we need to process it.

3. The class Tree just one field, which has type Node* (line 8).
Since this is a pointer type, we need to rewrite the type to
BasedPtr<Node>. We can see this update on the same line in
listing 5. Since the base type of the field is the class type Node,
we also need to recursively handle that class type.

4. The class Node has three fields (lines 2–4).

(a) The first field has primitive type int, so we ignore it.

(b) The second field has pointer type Node*, so we rewrite
the type to BasedPtr<Node>. However, due to memoization
we see that the Node class has already been processed (or,
rather, that it is currently being processed) so we skip
recursively handling the Node class, and immediately return
to processing the fields of Node.

(c) The third field also has pointer type Node*, so we also rewrite
its type to BasedPtr<Node>, and again skip recursively pro-
cessing Node due to memoization.

5. Now that we have processed all of the fields of Node, we return to
processing the other fields of Tree. However, there are no other
fields in Tree, so we return to the top-level routine to process
the next task argument type.

6. There are no more arguments to process in SubTask’s signa-
ture, which means that we are done processing the current
TaskBuilder<F> instance.

7. We move on to the next TaskBuilder<F> instance, which is on
line 26. This instance actually has the same type for F; however,
since we would have to iterate over the whole type signature
to see if it is equal to a previously processed signature, it is
simpler to naïvely process the whole signature again. Again, the
primitive type int is skipped. The second argument has type

30

https://github.com/DaoWen/ocxxr-ptr-xform

1 struct Node {

2 int value;

3 BasedPtr<Node> left;

4 BasedPtr<Node> right;

5 };

6

7 struct Tree {

8 BasedPtr<Node> root;

9 // ... methods ...

10 };

11

12 void SubTask(int i, Arena<Tree> tree) {

13 Node *tree_root = tree->root;

14 if (i < 10) {

15 // ... do something with tree_root ...

16 TaskBuilder<decltype(SubTask)> builder = /* ... */;

17 builder.CreateTask(i+1, tree);

18 } else {

19 Shutdown();

20 }

21 }

22

23 void MainTask() {

24 Arena<Tree> tree = Arena<Tree>::Create(ARENA_SIZE);

25 // ... set up tree ...

26 TaskBuilder<decltype(SubTask)> builder = /* ... */;

27 builder.CreateTask(0, tree);

28 }

Listing 5: Transformed code from listing 4, now using BasedPtr

objects for all persisted pointer values.

Arena<Tree>, which means we need to process the class Tree;
however, we return immediately due to memoization.

8. There are no more TaskBuilder<F> instances to process, which
means that the transformation of the input program is complete!
The resulting rewritten code is shown in listing 5.

Notice that the type of tree_root on line 13 was not altered.
This is because the scope of the pointer value stored in tree_root

is limited to the currently-executing task, which means it does not
persist across multiple tasks, and thus does not need a position-
independent encoding.

Source files corresponding to listings 4 and 5 are available as
examples in the ocxxr repository.

6.3 Limitations of the Algorithm

The primary purpose of this algorithm is to identify native pointer
fields in aggregate objects that are persisted across multiple tasks.
We do not attempt to identify pointers stored directly in global
memory; i.e., we assume that all data that is accessed across multiple
tasks is stored within a runtime-managed datablock. We also assume
that the full set of types that may be embedded within datablocks and
shared across tasks are reachable from the TaskBuilder definitions.
This assumption means that programs that are written directly in
OCR rather than using our ocxxr library are not analyzable using
this method. It also means that if the application programmer uses
explicit casts to read or write objects stored in a datablock, we
will not find the type information used in the cast, and we may not
correctly transform the corresponding class definitions. However,
explicit casts are only problematic if they add otherwise “hidden”
type information, such as long→T* or void*→U*. Valid casts up or
down a class hierarchy are not problematic.

We assume that all of the source code for a program is accessible,
and the entire program can be recompiled after the transformation.
This can be problematic when data types from third-party libraries

are used, as the user’s application might just compile against a
header file and then link against a pre-compiled library.

Since we transform the class definition for any objects that may
be persisted in a datablock, it is possible that an objects used as
temporary data will also be re-encoded using our technique. The
programmer could manually create separate versions of the class
definition (one for temporary objects and one for persistent objects);
however, automating that process is beyond the scope of this work.

Finally, our algorithm only addresses the pointers stored in ob-
jects, assuming that all of the aggregate objects are allocated within
datablocks. The ideal partitioning of aggregate objects into discrete
datablocks is currently determined manually by the application
programmer. The programmer must ensure that any calls to new

associated with the transformed types are properly rewritten to use
our ocxxr API to allocate the objects within a datablock rather than
placing them directly in unmanaged heap memory; however, in our
experience, manually rewriting the new operations after identify-
ing and transforming the class definitions for all persisting data is
much more straightforward and less error-prone than the pointer
identification and transformation.

7. Position-independent Encoding Optimization

The automatic conversion described in section 6 only makes use of
the more general BasedPtr type. While correct, programs produced
by this conservative approach will obviously be outperformed by
a program that utilizes the RelPtr type for storing intra-datablock
pointers. For example, assuming the Tree and all of its Nodes are
allocated within the same Arena datablock in listing 5, then it would
be legal to replace the BasedPtr<Node> types on lines 3, 4 and 8
with RelPtr<Node> types.

It is possible to hook into Clang’s alias analysis framework
to attempt to automatically identify possible RelPtr candidates;
however, we would require a custom alias analysis for determining
if a candidate pointer and its target are always allocated within
the same datablock. Traditional alias analysis algorithms check if
pointer A and pointer B both alias to the same object C; in contrast,
we need to know if pointer A that points to object B must reside
in the same datablock as object B, for all possible targets B of
the pointer A. Since we do not currently have a datablock-aware
alias-analysis framework available, we propose two alternatives to
help with optimization.

One option is to create a third class of pointer object that uses the
relative-offset encoding for intra-datablock references, but falls back
to the base-offset encoding for inter-datablock references. We name
this hybrid representation BasedDbPtr, since it is very similar to the
BasedPtr semantically, but we add Db to the name as a reminder
that it must be allocated within a datablock in order to support
the relative-offset encoding. It is included along with RelPtr and
BasedPtr in ocxxr. Note that while a BasedDbPtr should be much
more efficient than a BasedPtr for intra-datablock data accesses, the
copy-initialization operation is much more expensive since we must
check if the BasedDbPtr object and the target object are allocated
within the same datablock (and use RelPtr-style encoding for intra-
datablock references), rather than simply copying the target GUID
and offset values.

One additional interesting feature of the BasedDbPtr class is
that it explicitly distinguishes between inter- and intra-datablock
pointers. By exposing a predicate for checking that property, we
can leverage this encoding to more efficiently build and traverse
data structures where the partitioning of data across datablocks is
dynamically encoded within the pointers to the data.

A second method is to optionally store additional bookkeeping
information in BasedPtr objects, and log any references to inter-
datablock addresses from a specific BasedPtr field. The application
programmer then runs the program with several inputs, producing

31

a list of the RelPtr candidate fields (i.e., the complement of the
set of logged fields). Programmers can then focus on a (hopefully)
smaller list of candidates, and convert into RelPtr type just the
pointers that they can guarantee must be intra-datablock references.
The BasedDbPtr class could hypothetically be extended to perform
this extra bookkeeping; however, this is not currently supported in
ocxxr. We leave the exploration of this optimization method for
future work.

8. Position-independent Pointer Sanity Checks

Compiling with OCXXR_PTR_CHECKS defined enables a set of sanity
checks that may be useful during development and debugging
of ocxxr applications. These checks help ensure that all ocxxr

pointer objects have targets that are either null or are located in a
datablock that is accessible from the current task. For a RelPtr,
the check ensures that the pointer object and the target object
are in fact within the same datablock, which must be one of the
datablocks that was acquired for access by the current task. The
BasedPtr and BasedDbPtr classes make similar checks, but without
the requirement of being in the same datablock. The RelPtr checks
are done on assignment to the pointer object, whereas the BasedPtr

checks must be deferred until the pointer object is dereferenced in
order to guarantee access to the target datablock. The BasedDbPtr

class does checks both when assigning and when dereferencing,
depending on whether the target is located intra- or inter-datablock.

We enabled these checks during the development of our bench-
marks. The checks correctly flagged invalid references to objects
allocated on the execution stack or in other non-datablock sections
of memory. These checks also uncovered RelPtr objects allocated
on the execution stack. While a RelPtr will still function correctly
in this context (since the target datablock will not be moved while
the current task is still accessing it), using a native pointer is a better
fit for such pointers that are limited in scope to the current task. We
discuss the overheads associated with these extra sanity checks in
the next section.

9. Experimental Evaluation and Analysis

We chose to focus our experimental analysis on the additional
overhead introduced by using our position-independent pointer
objects in place of native pointers. However, it is important to
note that while our pointer abstractions do introduce a measurable
overhead, the native-pointer variants of the benchmarks violate the
OCR data model restrictions discussed in section 4, and therefore
will almost always result in errors when run on a multi-node
distributed OCR configuration.

9.1 Benchmarks

We use a set of five benchmarks to evaluate the performance of our
implementation, and specifically to measure the overhead introduced
by our position-independent pointer objects when compared with
using native pointers. The full source code for the benchmarks and
the scripts used to run them are available in the ocxxr repository. A
brief description of each of these benchmarks follows.

BinaryTree Performs a large number of lookups and insertions
of key/value pairs stored in an unbalanced binary tree. The tree
data structure is naïvely implemented in a single OCR datablock,
which allows us to use the RelPtr pointer representation for all
of the internal pointers to tree node objects (since all pointers are
intra-datablock pointers). This benchmark is also the basis for the
sample code shown in listings 1–5. The pointer type used by the tree
class is parameterized, making it easy to switch among our multiple
pointer representations to test a particular implementation.

Hashtable Performs a large number of lookups and insertions of
key/value pairs stored in a hashtable, which is implemented as an
array with a linked-list in each “bucket” to hold entries with colliding
hashes. This hashtable implementation is adapted from a proof-of-
concept general concurrent hashtable code included in the CnC-
OCR framework. The top-level array is allocated in one datablock.
The buckets are composed of fixed-sized blocks of key/value pair
entries, with each of these blocks allocated in its own datablock.
New entries are always added to the first block in a bucket, and a
new block is inserted if the first block is full. All inter-block pointers
in these internal structures use the BasedPtr representation.

LULESH A port of LULESH 2.0 [12] (a hydrodynamics simu-
lation kernel) to ocxxr. Our implementation is based on an exist-
ing port of the code to the CnC-OCR programming model [20].
LULESH uses “indirection arrays” to represent the relationships in
an unstructured hex mesh, which we implement using the RelPtr

class. The application also includes a large aggregate data structure
for storing constant data, where we again used the RelPtr class to
encode the base pointers to the dynamically-sized arrays used to
store the initial state of the mesh.

Tempest Performs climate modeling calculations on a cubed-
sphere grid using a subset of the Tempest framework [24], ported
to OCR using ocxxr constructs. Our Tempest mini-app creates a
small set of patches (each covering a section of the cubed-sphere
grid), and simulates 500 time-steps on the grid. Since the Tempest
framework is written in idiomatic C++—making heavy use of
aggregate objects in the code, including standard library containers
such as std::vector—this mini Tempest application is a prime
example for the techniques presented in this paper. Note that,
although our kernel is fairly simple, the supporting library code
involves a large set of classes, making the full application code
non-trivial.

UTS A port of the Unbalanced Tree Search benchmark [18] to
ocxxr. Unlike many traditional implementations, which simply
allocate transient tree nodes on the runtime stack during the recursive
search calls, we reify the entire tree data structure with OCR
datablocks. Clusters of connected nodes are allocated within discrete
datablocks, and all inter-node pointers are represented using our
BasedDbPtr class. Since the BasedDbPtr class can represent both
intra-datablock relative offsets (as done by RelPtr) and inter-
datablock based offsets (as done by BasedPtr), these objects can
be used for all inter-node pointers in the tree. Furthermore, the
BasedDbPtr provides a simple way to check if the pointer’s target
is local or within another datablock, which allows us to determine
when to create a new task to acquire the target data when the node
pointers cross datablock boundaries.

9.2 Experimental Setup

All experiments were run on a dedicated server with a 3.50GHz
Intel Core i7 Ivy Bridge 4-core CPU (Turbo Boost disabled) and
8GiB DDR3 memory, running Ubuntu 16.04. All benchmarks were
compiled with Clang v3.8. Each reported time is the average of 100
runs, with the error bars representing a 95% confidence interval.
The workload of each benchmark was adjusted to a single-threaded
execution time of about 2–10 seconds, as we found that run times
shorter than 1 second often do not provide a sufficiently high signal
to noise ratio, resulting in much more volatile measurements.

Since we are concerned with the overheads introduced by our
pointer objects rather than the baseline performance of the bench-
marks—and the pointer object usage is orthogonal to any multi-
threading performance bottlenecks—we chose to run these exper-
iments with a 1-thread worker pool. Although all of our bench-
marks can be executed in parallel on multiple threads, running
single-threaded helps to eliminate some schedule-related volatility.

32

BinaryTree Hashtable Lulesh Tempest UTS

Benchmark

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

S
lo

w
d

o
w

n

Native Pointers

Position Independent Pointers

Sanity Check Pointers

Figure 2: Execution times for three variants of each of our bench-
marks. Times are normalized to the native pointer version of each
benchmark. The sanity check variants are the same as the position-
independent pointer versions, but with the addition of the debug
checks discussed in section 8.

BinaryTree Hashtable Lulesh Tempest UTS

Benchmark

10−3

10−1

101

103

105

F
re

q
u
en

cy
(o

p
/m

s)

Initialization Dereference Total

Figure 3: A comparison of the relative density of ocxxr position-
independent pointer object operations in the total execution time of
each benchmark. The times here correspond to the mean position-
independent times from figure 2. Note that the y-axis uses log scale.

Likewise, since we chose to use native-pointer versions of our bench-
marks as our performance baseline, our experiments are restricted
to shared-memory runs (as the native-pointer versions will not run
on distributed OCR).

9.3 Results and Analysis

Figure 2 shows the mean execution times for each of our five
benchmarks. For each benchmark, we compare the performance of
three different versions: (1) a baseline version using native pointers,
(2) a transformed version using position-independent pointer objects,
and (3) the position-independent pointer version with the additional
checks described in section 8.

For all cases except the BinaryTree benchmark, the overhead
incurred due to using position-independent pointer objects was very
minimal. Even with the extra sanity checks enabled, the mean
execution time only exceeded the baseline by a few percent at
most. The reason for the significantly-higher overhead observed
in the BinaryTree benchmark can be seen in figure 3; the number of

Native RelPtr BasedPtr BasedDbPtr

Pointer Type

0

1

2

3

S
lo

w
d

o
w

n

Figure 4: Execution time for the BinaryTree benchmark using each
of the four pointer encodings discussed in this paper. The times are
normalized to the native pointer version.

operations performed on our ocxxr pointer objects in the BinaryTree
benchmark is over 20x higher than in Hashtable, which is the next
closest benchmark with regard to this metric.

BinaryTree can be considered as the worse-case scenario for
measuring the ocxxr pointer object overheads, as the benchmark’s
computation time is dominated by creating and traversing the pointer
objects that form the edges for the tree data structure. Even in this
high-utilization scenario, we only observed about 13% slowdown
when using our position-independent pointer objects compared
to the native pointer baseline, and 67% total slowdown with the
additional sanity checks.

In figure 4, we have reused the BinaryTree benchmark to measure
the overhead of all three variants of the ocxxr position-independent
pointer objects. As mentioned previously, this benchmark is struc-
tured very similarly to the code shown in listing 5. Since the entire
binary tree data structure is allocated within a single datablock in
this benchmark, we can choose any of our three pointer object types
to encode the references from parent to child nodes.

The native and RelPtr times shown in figure 4 are identical to the
first two cases shown in figure 2. In the case where we use BasedPtr
objects to encode the pointers among our tree node objects, we see
an overhead of about 3.5x the native pointer baseline. Since each
pointer dereference operation requires a function call to translate the
pointer target GUID into the corresponding datablock base address,
it is not surprising that the overhead is significantly higher than for
the RelPtr representation, which is able to directly compute the
target address directly by using its stored relative offset.

We see that the BasedDbPtr variant’s execution time falls about
halfway between that for RelPtr and BasedPtr. This is as expected,
since the BasedDbPtr class can be thought of as a compromise
of the tradeoffs for our RelPtr and BasedPtr classes. However,
note in figure 3 that the pointer-dereferencing operations in the
BinaryTree benchmark are much more common than the pointer-
initialization operations. The BasedDbPtr case benefits from this
fact since it uses the relative-offset encoding for intra-datablock
pointers (which is always the case here), and thus can avoid the
extra function call incurred when dereferencing a BasedPtr object.
However, the BasedDbPtr case still incurs the function-call overhead
when initializing the pointer objects, since it must still perform the
lookup for the target datablock’s base address and size to determine
if the BasedDbPtr resides within the same datablock as the target.

Both Tempest and UTS show a higher number of pointer ini-
tializations than dereferences in figure 3. Due to the mechanical
translation of the library code and the relative simplicity of our
Tempest kernel, many auxiliary data structures are created but not
accessed during the patch updates, leading to this imbalance. In
UTS, we instantiate the entire random tree, but the nodes are not

33

traversed again after construction, making our UTS implementation
our most initialization-focused sample.

It is worth noting that although the codebase used for our
Tempest benchmark contains a large number of aggregate objects to
model the many aspects of the hydrodynamics simulation—those
objects were rewritten to use our ocxxr position-independent pointer
objects to reference aggregate members—the actual density of
pointer-object operations in the benchmark execution as reported
in figure 3 is several orders of magnitude lower than the other
benchmarks. This is because the Tempest code spends a significant
amount of time performing floating-point operations in a loop to
update the state of each grid patch. Furthermore, the absolute pointer
addresses used in a particular task are computed once using the
position-independent pointer objects stored in the patch’s datablock,
and then cached in a native pointer variable for the remainder of
the task. Since the pointer-arithmetic to access the individual entries
in the patches is done via that task-scoped native pointer value, the
impact of the position-independent encoding on the execution time
is very minimal. We would expect to see a similar trend in other
compute-intensive applications.

Although one might expect our LULESH benchmark to exhibit
similar properties to what we observed for Tempest, the CnC-OCR
codebase that we used when porting LULESH to ocxxr performs
element-wise updates rather than using tiles on the mesh, which
means we perform only a few floating-point instructions when
updating the individual element values on each iteration. While
it would definitely be beneficial from a performance perspective
to refactor the code to perform tiled updates, we prefer the untiled
version for this study since it emphasizes the overhead of our ocxxr
pointer objects used to encode the mesh structure, as evidenced by
the higher proportion of pointer operations shown in figure 3 for our
version of LULESH compared to our Tempest framework mini-app.

10. Related Work

MPI allows communication of non-contiguous data through its de-
rived datatypes support [15]. OpenSHMEM currently has a much
more limited functionality for puts and gets of strided array el-
ements [19]. The functions in both MPI and OpenSHMEM for
communicating non-contiguous data constitute a form of serializa-
tion support. Higher-level runtimes such as Charm++ and HPX
use high-level serialization frameworks (resembling the popular
Boost.Serialize API) to enable communication of user-defined data
types types among compute nodes [1, 10].

A close analog in another runtime system to OCR’s datablock
concept is Realm’s concept of physical regions [23]. While Realm’s
physical regions differ from OCR datablocks in some ways (e.g., re-
duction support and data-type homogeneity), they are similar in that
both are discrete chunks of application data that are transparently
migrated by the runtime to satisfy task dependencies. Individual
elements in a region can be accessed via a Realm pointer. Realm
pointers remain valid even after data migration because they are
stored as an offset rather than an absolute address. However, in con-
trast to our BasedPtr class, Realm pointers do not store the handle
of the target physical region.

Most PGAS languages define a concept of a global pointer. Many
PGAS languages depend on compiler support to handle global
pointer accesses (e.g., X10 [6], UPC [26]). In contrast, UPC++
is a library-based solution with no specialized compiler support
requirements [27]. Instead, UPC++ uses its global_ptr template
class to handle globally-addressable data. Like our inter-datablock
pointers, UPC++ global pointers are encoded as an offset into a
block of data; however, the base address of each UPC++ global
memory region is fixed, and only one such region exists per process,
whereas in the OCR model we have multiple datablocks that may
be dynamically relocated by the runtime.

Using offsets as position-independent pointers is also an estab-
lished concept in some mainstream C++ libraries. Examples include
offset_ptr from Boost.Interprocess [8] and based pointers in Mi-
crosoft Visual C++ [16]. The primary use case for these constructs
is in data structures placed within memory-mapped files, where the
file may be loaded at a different base address in each process that
maps the file.

11. Future Research Directions

The ideas presented in this paper suggest several possible directions
for future research on further optimizations and related concepts.
For example, there may be many cases where it is possible to avoid
the overhead of the base-address lookup for a BasedPtr’s target by
directly supplying that value if it is already known. This optimization
could be manually applied by the application programmer, or
automatically applied by the compiler toolchain. As mentioned
in section 7, a custom alias analysis in the compiler toolchain could
also help identify ocxxr pointer objects that are provably safe to
encode using the RelPtr class. We assumed that the application
programmer will manually partition the application data into discrete
datablocks; however, automating the process of finding efficient
data partitioning schemes would be another way to improve the
application development process.

12. Conclusions

In this paper, we presented a marshalled encoding for relocatable
data blocks. We introduced ocxxr, a C++ library providing position-
independent pointer objects and other useful classes for developing
object-oriented OCR applications in C++. We also defined a con-
servative algorithm for rewriting native pointer types in an ocxxr

application into our position-independent pointer types, allowing
the rewritten classes to persist in datablocks that may be relocated
by the runtime during a gap between task executions. We provide
an implementation of this algorithm using Clang LibTooling.

To further aid in ocxxr application development, we outline
possible optimizations for the output of our conservative rewrite
algorithm, and provide a set of optional sanity checks to help main-
tain the correctness of the applications during the development and
optimization process. We measured the overhead introduced when
C++ aggregate objects are marshalled using our ocxxr position-
independent pointer objects compared to a naïve baseline using
native pointers. We found that the overhead observed in all but the
most extreme case was minimal, and that even in the extreme case,
the overhead was less than 1.2x the baseline. Considering that the
baseline implementations of our benchmarks violate the OCR data
model and will not correctly execute in distributed memory, we
believe the tradeoff is acceptable.

Acknowledgments

We would like to thank Gabriele Jost for her work porting Tempest to
OCR while at Intel, and Ellen Porter for her work porting LULESH
to CnC-OCR while at PNNL. This material is based upon work
supported by the Department of Energy, Office of Science, under
Award Number DE-SC0008717.

References

[1] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale. Parallel
Programming with Migratable Objects: Charm++ in Practice. In
SC14: International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 647–658, Nov. 2014. doi:
10.1109/SC.2014.58.

[2] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally,
E. Elnohazy, R. Harrison, W. Harrod, J. Hiller, S. Karp, C. Koelbel,

34

D. Koester, P. Kogge, J. Levesque, D. Reed, R. Schreiber, M. Richards,
A. Scarpelli, J. Shalf, A. Snavely, and T. Sterling. ExaScale Soft-
ware Study: Software Challenges in Extreme Scale Systems, 2009.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.3944.

[3] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing
Locality and Independence with Logical Regions. In Proceedings

of the International Conference on High Performance Computing,

Networking, Storage and Analysis, SC ’12, pages 66:1–66:11, Los
Alamitos, CA, USA, 2012. IEEE Computer Society Press. ISBN
978-1-4673-0804-5. URL http://dl.acm.org/citation.cfm?id=2388996.
2389086.

[4] cereal. cereal - a c++11 library for serialization. GitHub.com, 2013.
http://uscilab.github.io/cereal/.

[5] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel,
and L. Smith. Introducing OpenSHMEM: SHMEM for the PGAS
Community. In Proceedings of the Fourth Conference on Partitioned

Global Address Space Programming Model, PGAS’10, pages 2:1–2:3,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0461-0. doi:
10.1145/2020373.2020375. URL http://doi.acm.org/10.1145/2020373.
2020375.

[6] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an Object-Oriented
Approach to Non-Uniform Cluster Computing. In Proceedings of

the Twentieth Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA ’05,
pages 519–538, Oct. 2005.

[7] H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns. Journal of Parallel and Distributed Computing, 74(12):3202–
3216, 2014.

[8] I. Gaztanaga. Boost Interprocess Library. Boost.org, 2005. http:
//www.boost.org/libs/interprocess/.

[9] J. R. Hammond, S. Ghosh, and B. M. Chapman. Implementing Open-
SHMEM Using MPI-3 One-Sided Communication. In Proceedings

of the First Workshop on OpenSHMEM and Related Technologies. Ex-

periences, Implementations, and Tools - Volume 8356, OpenSHMEM
2014, pages 44–58, New York, NY, USA, 2014. Springer-Verlag New
York, Inc. URL http://dx.doi.org/10.1007/978-3-319-05215-1_4.

[10] T. Heller. Removal of Boost.Serialization. Mailing list announcement
(gmane.comp.lib.hpx.devel), Apr. 2015. http://thread.gmane.org/gmane.
comp.lib.hpx.devel/196.

[11] R. D. Hornung and J. A. Keasler. The RAJA Poratability Layer:
Overview and Status. Technical Report LLNL-TR-661403, Lawrence
Livermore National Laboratory, Sept. 2014.

[12] I. Karlin, J. Keasler, and R. Neely. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973, Aug. 2013.

[13] LibTooling. LibTooling. Clang 3.9 documentation, 2016. http:
//clang.llvm.org/docs/LibTooling.html.

[14] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee,
J. Fryman, I. Ganev, R. Knauerhase, M. Lee, B. Meister, B. Nickerson,
N. Pepperling, B. Seshasayee, S. Tasirlar, J. Teller, and N. Vrvilo.

The Open Community Runtime: A runtime system for extreme scale
computing. In 2016 IEEE High Performance Extreme Computing

Conference (HPEC), pages 1–7, Sept. 2016. doi: 10.1109/HPEC.2016.
7761580.

[15] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 3.1, June 2015. http://mpi-forum.org/docs/.

[16] MSDN. Based Pointers (C++). MSDN Library, 2008. https://msdn.
microsoft.com/en-us/library/57a97k4e.aspx.

[17] OCR. The Open Community Runtime. Modelado.org, 2014. https:
//xstackwiki.modelado.org/OCR.

[18] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and
C.-W. Tseng. UTS: An Unbalanced Tree Search Benchmark. In
Proceedings of the 19th International Conference on Languages and

Compilers for Parallel Computing, LCPC’06, pages 235–250, Berlin,
Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-72520-6. URL
http://dl.acm.org/citation.cfm?id=1757112.1757137.

[19] OpenSHMEM.org. OpenSHMEM: Application Programming Interface,
Version 1.3, Feb. 2016. http://www.openshmem.org/site/Specification/.

[20] E. Porter, K. Knobe, and J. Feo. Experience Porting LULESH to CnC.
In CnC’14: The Sixth Annual Concurrent Collections Workshop, Sept.
2014. URL http://cass-mt.pnnl.gov/cnc2014/Slides/1.4_EllenPorter.
pdf. Source Code https://xstack.exascale-tech.com/git/public?p=apps.
git;a=tree;f=apps/lulesh-2.0.3/refactored/cnc-ocr/pnnl/per-element.

[21] R. Ramey. Boost Serialization Library. Boost.org, 2002. http:
//www.boost.org/libs/serialization/.

[22] H. Shan, B. Austin, N. J. Wright, E. Strohmaier, J. Shalf, and K. Yelick.
Accelerating applications at scale using one-sided communication. In
Proceedings of the Conference on Partitioned Global Address Space

Programming Models (PGAS’12), 2012.

[23] S. Treichler, M. Bauer, and A. Aiken. Realm: An Event-based Low-
level Runtime for Distributed Memory Architectures. In Proceedings

of the 23rd International Conference on Parallel Architectures and

Compilation, PACT ’14, pages 263–276, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2809-8. URL http://doi.acm.org/10.1145/
2628071.2628084.

[24] P. Ullrich, G. Jost, B. A. Lelbach, and H. Johansen. Exascale-Ready
Programming Models for Climate. In Workshop on Advancing X-

cutting Ideas for Computational Climate Science, AXICCS ’16, Jan.
2016.

[25] P. A. Ullrich. A global finite-element shallow-water model supporting
continuous and discontinuous elements. Geoscientific Model Develop-

ment, 7(6):3017–3035, 2014. doi: 10.5194/gmd-7-3017-2014. URL
http://www.geosci-model-dev.net/7/3017/2014/. https://github.com/
paullric/tempestmodel/.

[26] UPC Consortium. UPC language specifications v1.2. Technical Report
LBNL-59208, Lawrence Berkeley National Laboratory, 2005.

[27] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick. UPC++:
a PGAS extension for C++. In Parallel and Distributed Processing

Symposium, 2014 IEEE 28th International, pages 1105–1114. IEEE,
2014.

35

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.3944
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://uscilab.github.io/cereal/
http://doi.acm.org/10.1145/2020373.2020375
http://doi.acm.org/10.1145/2020373.2020375
http://www.boost.org/libs/interprocess/
http://www.boost.org/libs/interprocess/
http://dx.doi.org/10.1007/978-3-319-05215-1_4
http://thread.gmane.org/gmane.comp.lib.hpx.devel/196
http://thread.gmane.org/gmane.comp.lib.hpx.devel/196
http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibTooling.html
http://mpi-forum.org/docs/
https://msdn.microsoft.com/en-us/library/57a97k4e.aspx
https://msdn.microsoft.com/en-us/library/57a97k4e.aspx
https://xstackwiki.modelado.org/OCR
https://xstackwiki.modelado.org/OCR
http://dl.acm.org/citation.cfm?id=1757112.1757137
http://www.openshmem.org/site/Specification/
http://cass-mt.pnnl.gov/cnc2014/Slides/1.4_EllenPorter.pdf
http://cass-mt.pnnl.gov/cnc2014/Slides/1.4_EllenPorter.pdf
https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/lulesh-2.0.3/refactored/cnc-ocr/pnnl/per-element
https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/lulesh-2.0.3/refactored/cnc-ocr/pnnl/per-element
http://www.boost.org/libs/serialization/
http://www.boost.org/libs/serialization/
http://doi.acm.org/10.1145/2628071.2628084
http://doi.acm.org/10.1145/2628071.2628084
http://www.geosci-model-dev.net/7/3017/2014/
https://github.com/paullric/tempestmodel/
https://github.com/paullric/tempestmodel/

	Introduction
	Background
	One-sided Communication
	Data Block Migration
	Serialization

	Overview of Our Solution
	Pointer Usage in Tasks and Datablocks
	Intra-datablock Pointers
	Inter-datablock Pointers

	Additional C++ API Support
	Pointer Conversion Algorithm
	Description of the Algorithm
	Example of Program Transformation
	Limitations of the Algorithm

	Position-independent Encoding Optimization
	Position-independent Pointer Sanity Checks
	Experimental Evaluation and Analysis
	Benchmarks
	Experimental Setup
	Results and Analysis

	Related Work
	Future Research Directions
	Conclusions

