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Abstract—From OpenMP 4.0 onwards, programmers can of-
fload code regions to accelerators by using the target offloading
feature. However, incorrect usage of target offloading constructs
may incur data mapping issues. A data mapping issue occurs
when the host fails to observe updates on the accelerator or vice
versa. It may further lead to multiple memory issues such as
use of uninitialized memory, use of stale data, and data race.
To the best of our knowledge, currently there is no prior work
on dynamic detection of data mapping issues in heterogeneous
OpenMP applications.

In this paper, we identify possible root causes of data mapping
issues in OpenMP’s standard memory model and the unified
memory model. We find that data mapping issues primarily
result from incorrect settings of map and nowait clauses in
target offloading constructs. Further, the novel unified memory
model introduced in OpenMP 5.0 cannot avoid the occurrence
of data mapping issues. To mitigate the difficulty of detecting
data mapping issues, we propose ARBALEST, an on-the-fly data
mapping issue detector for OpenMP applications. For each vari-
able mapped to the accelerator, ARBALEST’s detection algorithm
leverages a state machine to track the last write’s visibility.
ARBALEST requires constant storage space for each memory
location and takes amortized constant time per memory access.
To demonstrate ARBALEST’s effectiveness, an experimental com-
parison with four other dynamic analysis tools (Valgrind, Archer,
AddressSanitizer, MemorySanitizer) has been carried out on a
number of open-source benchmark suites. The evaluation results
show that ARBALEST delivers demonstrably better precision
than the other four tools, and its execution time overhead is
comparable to that of state-of-the-art dynamic analysis tools.

Index Terms—Dynamic Analysis, Concurrency Bug Detection,
Data Mapping Issue, OpenMP, Accelerator

I. INTRODUCTION

In recent years, accelerators, especially NVIDIA GPUs, are

becoming widely available in high-performance computing

(HPC) platforms. According to the latest Top500 list, there are

139 supercomputers using NVIDIA GPUs, which includes six

out of the top ten machines. Considering the massive compute

power of accelerators, programmers are turning to heteroge-

neous programming when developing parallel applications [1]–

[3]. Many parallel programming models, such as OpenMP [4]

and Kokkos [5], have added support for accelerators to follow

the trend of heterogeneous programming.

OpenMP has been used extensively for multithreaded parallel

programming in the past decades. Starting from the 4.0 version,

OpenMP introduced a new feature, target offloading, which

enables migrating computation to accelerators during the

program execution. Target offloading is applicable to a broad

spectrum of accelerators. It provides a set of generic constructs

(device directives) to help programmers declare compute kernels

(code regions to be executed on the accelerator) and data

movement. Furthermore, target offloading delegates many

burdensome programming tasks to the underlying runtime, for

instance, memory management on the accelerator. Compared to

other accelerator programming models such as CUDA [6] and

ROCm [7], target offloading requires less engineering effort to

achieve similar performance [8], [9].

In this paper, we focus on the data movement and memory

management aspects of target offloading. Considering distinct

architectures adopted by accelerator manufacturers, OpenMP

utilizes a hardware-agnostic abstraction, data mapping, to

represent data movement between the host and an available

accelerator. A data mapping is specified by a map clause with

two key parameters (see Figure 1):

• mapped variable, the variable or array section involved

in the data mapping;

• map-type, the effect of data mapping, e.g., transferring

the variable to/from the accelerator

For each mapped variable, there is an associated storage

location on the host and accelerator. To comply with the

OpenMP specification, we refer to these two kinds of storage

as original variable (OV) and corresponding variable (CV),

respectively. The OpenMP runtime automatically manages the

lifecycle of CV and makes its physical address transparent to

programmers. When compiling a compute kernel, the compiler

transforms mapped variable accesses to operate on the CV.

In certain OpenMP implementations, OV and CV may reside

in the same physical memory (e.g., NVIDIA GPUs’ Unified

Memory). Otherwise, the two storage locations are independent

and may have inconsistent values.

The OpenMP runtime takes care of all low-level operations

related to data mapping (e.g., allocating/deallocating the

corresponding copy, physical address lookup), and keeps the

mapping transparent to programmers. Thus data mapping

significantly reduces the engineering effort for experienced

OpenMP programmers. On the other hand, correctly under-

standing OpenMP’s data mapping rules remains challenging for
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1 #define N 5000
2

3 int a[N], b[N*N], c[N];
4

5 init(a, b, c);
6

7 #pragma omp target
8 map(to:a[0:N])
9 map(alloc:b[0:N*N]) // mapping type should be "to"

10 map(tofrom:c[0:N])
11 {
12 #pragma omp teams distribute
13 #pragma omp parallel for
14 for(int i=0; i<N; i++)
15 for(int j=0; j<N; j++)
16 c[i]+=b[j+i*N]*a[j]; // data mapping issue
17 }

Fig. 1: Data mapping issue in DRACC OMP 022. The target
construct declares a compute kernel from line 11 to line 17.

The associated map clause in line 9 indicates that array b’s
CV is allocated but not initialized, which causes a use of

uninitialized memory (UUM) in line 16.

programmers. Multiple types of bugs may arise from incorrect

data mappings such as use of uninitialized memory (UUM),

use of stale data (USD), and data race. They may further affect

the program execution, resulting in an erroneous output or even

program crashes. According to feedback gathered in recent

OpenMP hackathons, such incorrect usage of data mappings

is a source of programming complexity. Programmers would

like to be aware of these issues even if they turn out not to be

bugs at runtime.

UUM and USD may stem from incorrect usage of map clause

or other target offloading constructs, including a) missing a

necessary data movement (e.g., the absence of a map clause or

update construct), b) incorrect host variable or array section,

and c) incorrect map-type. Moreover, failing to order data

mappings and memory accesses may result in data races. In

this paper, we refer to such errors resulting from incorrect

data mappings as data mapping issues. Figure 1 illustrates a

real-world example from DRACC. DRACC is a benchmark

suite designed to evaluate the effectiveness of program analysis

tools [10]. It reveals a number of concurrency bugs related to

heterogeneous programming.

In contrast to well-studied concurrency bugs, such as data

race [11]–[15], deadlock [16], [17], and barrier divergence [18],

data mapping issues in heterogeneous computing are poorly

understood. Data mapping issues can be manifested as different

observable anomalies, and no existing tool can guarantee sound-

ness and completeness when detecting data mapping issues.

We have evaluated four dynamic analysis tools on benchmarks

from DRACC: Valgrind[19], Archer [15], AddressSanitizer

(ASan) [20], and MemorySanitizer (MSan) [21]. The result

shows that none of them can accurately identify all known data

mapping issues. We also observed that these tools could only

tackle a subset of data mapping issues due to limitations in

their detection algorithms (for details of this evaluation, please

refer to Section VI).
Based on a comprehensive study of data mapping issues, we

observe that the root cause of data mapping issues lies in the

inconsistency between OV and CV. As a result, we can define

a data mapping issue as follows:

Definition 1 (Data Mapping Issue). For a read on the host
that can receive a value from a write to the same variable on
the accelerator (or vice versa), a data mapping issue occurs
if the read does not observe the write; namely, the read fails
to return the value placed by the write.

Based on Definition 1, an OpenMP application should always

generate a consistent result regardless of the accelerator’s

features (e.g., unified memory). This definition describes the

behavior of data mapping issues through the visibility of write

operations. Since an operation’s visibility can be examined

at runtime, we propose ARBALEST, a dynamic data mapping

issue detector for OpenMP applications. Inspired by cache

coherence protocols, ARBALEST uses a state machine to track

the state of each variable involved in a data mapping. A state

transition is triggered when the application issues a memory

access. ARBALEST reports a data mapping issue when a state

machine transitions to the ‘illegal’ state. ARBALEST requires

O(1) storage space for each variable, and takes O(1) time to

complete a state transition.
ARBALEST is built upon Archer [15] to fully reuse the

LLVM sanitizer infrastructure [22] and OMPT interface [23].

ARBALEST leverages a convenient feature of target offloading

that the host can be treated as a ‘virtual’ accelerator. By setting

the host as the destination of offloading, compute kernels

will be executed by another group of threads, and memory

transfers will be simulated by dynamic memory allocation

(malloc/free) and memory block copy (memcpy). With these

features, ARBALEST utilizes dynamic analysis techniques

designed for CPU applications (e.g. shadow memory [24])

to implement the detection algorithm, which reduces the

complexity of implementation.
In summary, this paper makes the following contributions:

• We present a clear definition of data mapping issues based

on our study of the OpenMP specification and open-source

benchmarks.

• We reason about the relation between data mapping

issues and the underlying accelerator memory model.

Our reasoning demonstrates that unified memory cannot

prevent the occurrence of data mapping issues.

• We have implemented ARBALEST, an on-the-fly data map-

ping issue detector for OpenMP applications. ARBALEST

can pinpoint all data mapping issues that the application

encounters.

• We have conducted evaluations with benchmarks from

DRACC [10] and SPEC-ACCEL [25] to compare the

precision and performance of ARBALEST relative to four

other tools. The result shows that ARBALEST reported all

known data mapping issues in these benchmarks, while

the average time overhead to the program execution is

acceptable.
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• ARBALEST is publicly available at https://github.com/

lechenyu/Arbalest.git.

The remainder of this paper is organized as follows:

In Section II, we introduce target offloading’s execution

model and all associated constructs. In Section III, we present

case studies for known data mapping issues and explain the

refined definition. Section IV illustrates ARBALEST’s detection

algorithm, followed by the implementation of ARBALEST

in Section V. We evaluate the correctness and performance of

ARBALEST in Section VI. We summarize some related work

in Section VII, and finally, in Section VIII, we briefly conclude

with some possible directions for future work.

II. OPENMP TARGET OFFLOADING

As a major change to OpenMP’s execution model, target

offloading was added to the specification in OpenMP 4.0. The

community continued the efforts to add more functionalities

and clarifications in subsequent releases. In this section, we

introduce the details of target offloading in accordance with

the latest OpenMP 5.1.

A. Execution Model

OpenMP applies a generic execution model to support

accelerators from different manufacturers (e.g., NVIDIA, AMD,

ARM). An accelerator is abstracted as a compute resource with

independent processing units and memory space. The execution

model is host-centric such that an OpenMP application consists

of a host program and a number of target regions. OpenMP

uses the term target region to refer to a compute kernel in

the program. The host program begins execution on the host

(usually CPU), and may offload computation and data to

available accelerators. After submitting a target region to an

accelerator, the host program either proceeds or waits for the

termination of the target region.

A target region may be executed on a broad spectrum of

accelerators. A well-formed OpenMP application will show

consistent behavior when offloading the same target region to

different accelerators. In addition, a target region can also be

offloaded to an available CPU. By setting a CPU as the target

device, programmers can examine the interaction between the

host program and target regions using common debuggers

without GPU support (e.g., GDB, LLDB). This configuration

eases the debugging for OpenMP applications.

B. Device Directives

The corresponding constructs for target offloading are device
directives, including:

• the target construct annotating a target region,

• the target data construct declaring data mappings for

the enclosed code region,

• the target enter data and target exit data
constructs for an unstructured version of target data
construct, and

• the target update construct indicating a synchronization

between OV and CV.

The comprehensive behaviors of device directives are described

in section 2.14 of the OpenMP specification [4].

For target, target data, target enter data, and target
exit data constructs, multiple map clauses may be present to

specify data mappings. Proper memory transfer will be carried

out at the beginning and end of the associated code region,

according to the map-types of specified data mappings.

Table I lists the semantics of predefined map-types in terms

of memory transfer. To mitigate unnecessary memory transfer,

OpenMP applies a reference counting algorithm along with

data mapping. The underlying runtime maintains a counter for

each mapped variable to indicate whether the variable’s CV

has been created. No memory transfer will be carried out if

the CV already exists on the accelerator.

For target update construct, to and from clauses specify

the direction of memory transfer. The reference counting is

not applied to this construct.

If a nowait clause is present in a device directive, the host

thread can continue execution after launching the construct;

otherwise the host thread will block until the construct

terminates. We refer to target regions with nowait clauses

as asynchronous compute kernels, and without nowait clauses

as synchronous compute kernels.

III. DATA MAPPING ISSUE

According to the specification, an accelerator’s architecture

details are transparent to OpenMP. Thus the data mapping

semantics in an OpenMP application should be consistent

regardless of the underlying accelerator. However, the runtime

behavior of data mapping issues may vary among distinct

accelerator memory models, e.g., architectures with/without

unified memory [6]. In this section, we first introduce a few

case studies to analyze probable runtime behaviors of data

mapping issues in a separate memory model. Furthermore, we

take unified memory into account and discuss its effect on data

mapping issues.

A. Separate Memory Model

OpenMP can be implemented on hardware exposing a

separate memory model. Host and each accelerator have

isolated memory space, and explicit memory transfers are

indispensable to maintain the consistency between a variable’s

OV and CV. According to Definition 1 and the semantics

of device directives, the probable runtime behaviors of data

mapping issues are UUM, USD, and data race.

Figure 1 presents a data mapping issue resulting in a UUM.

To illustrate the other two types of data mapping issues, we

show a buggy OpenMP application in Figure 2. There are two

data mapping issues residing in lines 5 and 16. The read in

line 5 results in a USD as it fails to observe the write in line 3.

The root cause is the incorrect map-type of variable a in the

first target region. To fix this data mapping issue, a’s map-type

should be set to tofrom. For line 16, the result of the read

to a is nondeterministic. Due to the nowait clause, the target

region from lines 9 to 12 may happen in parallel with the

host program, and hence the memory transfer at the end of
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TABLE I: Map-types in OpenMP. The corresponding se-

mantics is described in pseudocode. OV and CV refer to a

mapped variable’s storage location on the host and accelerator.

ref count returns the associated counter of CV. exist checks

whether CV has been created on the accelerator, namely

ref count(CV) == 0. new allocates a memory block for CV
in accelerator memory, and delete frees the allocated memory

block. memcpy(dst, src) copies data between OV and CV.

Map-Type Effect on Entry to
the Associated Region

to, tofrom

if (!exist(CV )) {
new CV ;

memcpy(CV ,OV );

ref count(CV ) = 1;

} else {
ref count(CV ) += 1; }

from, alloc

if (!exist(CV )) {
new CV ;

ref count(CV ) = 1;

} else {
ref count(CV ) += 1; }

Map-Type Effect on Exit from
the Associated Region

from, tofrom

ref count(CV ) −= 1;

if (ref count(CV ) == 0) {
memcpy(OV ,CV );

delete CV ; }

to, alloc,

ref count(CV ) −= 1;

if (ref count(CV ) == 0) {
release delete CV ; }

delete
ref count(CV ) = 0;

delete CV ;

the target data region (line 14) may conflict with the memory

access in lines 13 and 16. The read in line 16 may return the

value placed by the write in line 11 or 13, depending on the

interleaving of the host program and the target region. Figure 3

shows the corresponding data dependence graphs for probable

interleavings. To fix the data mapping issue in line 16, the

application should maintain a correct happens-before relation

for the host and accelerator, e.g., adding a synchronization

operation before the write to a in line 13.

B. Unified Memory Model

To simplify accelerator programming, recent accelerators

adopt unified memory, a virtual shared memory space among

the host and accelerators. Each memory location in unified

memory is transparently accessible to all processing units,

and programmers do not need to insert explicit memory

transfers into the application. Leveraging unified memory to

implement target offloading is optional for an OpenMP runtime.

An OpenMP applications can use a requires directive to

1 int a = 1;
2 #pragma omp target map(to: a)
3 a += 1;
4 // read stale data on the host
5 printf("a = %d\n", a);
6

7 #pragma omp target data map(tofrom: a)
8 {
9 #pragma omp target nowait

10 {
11 a = 3;
12 }
13 a += 1;
14 }
15 // nondeterministic result of a
16 printf("a = %d\n", a);

Fig. 2: Possible Data Mapping Issues in OpenMP Applications
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Fig. 3: Dynamic Data Dependence Graph for Figure 2

specify the necessity of unified memory for the application’s

correctness.

With unified memory, programmers might assume that

modifying a variable on the host is directly visible on the

accelerator, which prevents the occurrence of data mapping

issues. For example, Pascal and later NVIDIA GPUs apply an

on-demand page migration policy for unified memory. A GPU

page fault is raised when the GPU accesses an absent page,

and the GPU driver will automatically transport the page from

host to GPU. On-demand page migration helps resolve data

mapping issues in a data-race-free OpenMP application.

Without a cache coherence protocol, data mapping issues

might still occur. OpenMP introduces flush operations to

synchronize threads’ temporary view (cache) with the memory

space, removing the need for cache coherence. Therefore, data

mapping issues may arise when updates on the host are not

flushed into memory before subsequent reads on the GPU.

Considering the implicit cross-device flush operations before

and after each target region, such buggy cases can only happen

if updates on the host and reads on the GPU occur concurrently

without proper synchronization.

C. Repairing Data Mapping Issues

With an integrated static/dynamic analysis module, an

OpenMP implementation can repair a subset of data mapping
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issues. Some pioneering work has been conducted in this

direction [26], albeit the prototype has not been deployed for

production use. When identifying data mapping issues resulting

in USDs, the OpenMP runtime can carry out memory transfers

between OV and CV to make their values consistent. For data

mapping issues leading to data races, the compiler can insert

additional depend clauses to the associated target regions or

provide compiler diagnostic messages to help programmers

identify the detected bugs’ root causes.

IV. DYNAMIC DATA MAPPING ISSUE DETECTION

In this section, we present our approach for data mapping

issue detection and describe its implementation in ARBALEST.

A. Variable State Machine

Definition 1 indicates that the root cause of data mapping

issues is the inconsistency between OV and CV. Some OpenMP

implementations might allocate a shared memory location for

OV and CV [27], but programmers should not rely on a specific

implementation when examining an OpenMP application’s

correctness.

Assume OV and CV are independent, and all operations

except memory transfer can only access the storage location

on the current device. A write to CV makes OV’s value

invalid. Without a synchronization, subsequent reads to OV

always retrieve the invalid value, namely a data mapping issue.

Similarly, a write to OV followed by reads to CV also results

in data mapping issues. Therefore, the validity of OV and CV

can be utilized to determine the occurrence of data mapping

issues.

We propose a variable state machine (VSM) to track the

status of a mapped variable. For a mapped array section, each

element is tracked independently by VSM. As depicted in

Figure 4, VSM consists of four distinct states:

• invalid, neither of the two storage locations has a valid

value,

• host, only OV has the valid value,

• target, only CV has the valid value, and

• consistent, the two storage locations are consistent and

valid.

The following operations can cause transitions which are

depicted as edges in VSM:

• readhost/readtarget, which gets the value from OV/CV;

• writehost/writetarget, which sets a new value into

OV/CV;

• updatehost/updatetarget, which synchronizes OV and CV

using the value in CV/OV; and

• allocate/release, which allocates/deallocates CV on the

accelerator.

The associated label on an edge indicates the operations

triggering the transition. For conciseness, the subscript is

omitted if both two kinds of read, write, or update operations

trigger the same transition in a certain state.

invalid

target

host

consistent
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writehost
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Fig. 4: Per Variable State Machine

B. States and Transitions in VSM

Invalid: no storage location has a valid value. VSM uses

invalid as the initial state since each variable is uninitialized

at the beginning. A data mapping issue is reported when a

read operation to OV/CV happens. In invalid, a write on the

host/accelerator makes the state jump to host/target, while

other operations do not change the state.

Host: OV has a valid value, and CV is either unallocated or

invalid. A data mapping issue is reported when a readtarget
operation happens. In host, A writetarget operation makes

CV hold the latest value, so that the variable’s state jumps

to target. A memory transfer from CV to OV (updatehost)
changes the state to invalid since OV has been overwritten

by the invalid value in CV. In addition, the variable’s state

enters consistent after a memory transfer from OV to CV

(updatetarget) synchronizes the two storage locations.

Target: similar to host except that OV has an invalid value.

A data mapping issue is reported when a readhost operation

happens. For transitions, the key difference from host is that

there are two operations switching the variable’s state from

target to invalid (updatetarget and release).

Consistent: both the OV and CV are valid. Thus no data

mapping issue will occur in consistent. A write operation

on the host/target changes the state to host/target as the two

storage locations are no longer consistent.

In total there are three situations resulting in data mapping

issues: a) a readhost/readtarget operation in invalid, b) a

readtarget operation in host, and c) a readhost operation in

target. In VSM, there are no corresponding transitions for

these situations. VSM reports data mapping issues when it

fails to find out the next state for the current operation.

C. The Complexity of VSM Based Detection Algorithm

For higher accuracy, ARBALEST applies VSM at 8-byte

granularity when examining memory accesses. For every 8-
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byte of a mapped variable/array sections, ARBALEST allocates

a fixed-size shadow memory [24] to record those states

in Figure 4. The shadow memory is a 2-tuple that marks the 8-

byte memory section’s validity in OV and CV. Upon allocating

the variable on the host, all associated tuples are initialized as

invalid ([Host : 0, Accel : 0]) because the variable’s CV has

not been created and its OV has not been explicitly initialized.

The shadow memory is attached to OV and bijectively mapped

to OV’s address. ARBALEST uses an interval tree to maintain

the relationship between OV and CV. When a memory access to

CV happens, a O(log2(m))-time lookup in the interval tree is

conducted to retrieve the associated shadow memory, where m
is the number of mapped variables/array sections. Considering

m is small in most OpenMP applications, and ARBALEST

can cache the latest lookup, the overhead of lookup will be

amortized over the total number of memory accesses.

For all operations except read, ARBALEST performs an O(1)-
time update to the corresponding state. When encountering a

read operation, ARBALEST conducts an O(1)-time comparison

to detect data mapping issues. In addition, each access to

CV needs an O(log2(m))-time lookup to locate OV and

retrieve the state. In summary, ARBALEST requires linear space

with the size of mapped variables and amortized O(1) time

per operation. Moreover, ARBALEST implements VSM in a

lock-free manner. The O(1)-time update and comparison are

conducted by the atomic compare-and-swap instruction, which

allows a fully concurrent analysis during program execution.

Applying VSM at byte-level granularity is requisite for

soundness. For a mapped variable, OpenMP does not enforce

any constraints on the granularity of operations, and hence

every byte may be manipulated independently. Assuming a

compute kernel only modifies a few bytes in a CV, and fails

to transfer the update back to the corresponding OV. A coarse-

grained check may lead to false alarms if subsequent read

operations only access those intact bytes in OV. Since most

operations in scientific applications are performed in double-

precision arithmetic, ARBALEST keeps track of read and write

operations at 8-byte granularity to assure soundness.

The state transition diagram shown in Figure 4 assumes that

the OpenMP application only utilizes a single accelerator. By

extending states in VSM, the algorithm can support multiple

accelerators. For an OpenMP application using n accelerators,

the variable state is an (n+1)-tuple in which n elements mark

the validity of the n associated storage locations on accelerators.

The space overhead increases to O(n + 1), and accordingly,

time complexity also becomes O(n+ 1) to maintain the state.

D. Extension for Buffer Overflow

An OpenMP application may encounter buffer overflow

after setting an erroneous array section in the map clause. For

example, the host program only maps the first half of an array

to the accelerator, while the compute kernel loops through

the whole array. Since the OpenMP runtime manages CV’s

physical address, the buffer overflow becomes an undefined

behavior. It may retrieve a valid value from an adjacent memory

location which happens to be another variable’s CV. In such a

situation, the buffer overflow does not result in a data mapping

issue, but the application’s final output is not trustworthy.

ARBALEST extends the definition of data mapping issues

to capture buffer overflows in a CV. When a compute kernel

accesses a mapped array section, the operation must perform

on the array’s CV; otherwise, ARBALEST will report an

error. ARBALEST leverages the interval tree to find out buffer

overflows. Using LLVM IR, ARBALEST records CV’s base

address. For each memory access to CV, ARBALEST compares

the accessed physical address with CV’s base address. If the

two addresses belong to different intervals in the interval tree,

ARBALEST reports it as a data-mapping-related buffer overflow.

E. General Data Mapping Issue Detection Method for OpenMP
Applications

The VSM based detection algorithm precisely reports data

mapping issues in the observed execution trace. These data

mapping issues are real bugs in the application since they

further lead to UUM or USD. However, VSM only examines a

single schedule of compute kernels. For OpenMP applications

using asynchronous compute kernels, there exist multiple

possible schedules. VSM may lead to false negatives if the

hidden data mapping issues do not manifest in the observed

schedule.

To tackle asynchronous compute kernels, we introduce The-

orem 1, a sufficient and necessary condition for data-mapping-

issue-freedom.

Theorem 1 (Data-mapping-issue-freedom Theorem). For an
OpenMP application containing asynchronous compute kernels,
the application is free of data mapping issues if

1) the OpenMP application is free of data races, and
2) no data mapping issue is detected by VSM when executing

all asynchronous compute kernels in a synchronous
manner (the host thread suspends until the termination of
the asynchronous compute kernel).

Due to the page limit, we omit the formal proof of Theorem 1.

We present informal proof here to reveal the relationship

between data races and data mapping issues.

Informal Proof of Theorem 1.
Hypothesis 1, data-race-freedom, indicates that all read,

write, and update operations to the same variable are correctly

ordered. Hypothesis 2 indicates that in a specific schedule, there

is no data mapping issue. Let α be the observed execution

trace in which asynchronous compute kernels execute in a

synchronous manner, and β be the trace of another probable

schedule. We assume the schedule of compute kernels does not

affect the program path at runtime. So that α and β perform the

same set of operations. We prove Theorem 1 by contradiction.

Suppose the two hypotheses hold, and there is a data mapping

issue in β triggered by a read operation r. According to the

definition of data mapping issue, we have that α returns the

value of a write operation w in α, and a different write operation

ŵ in β. It indicates in β

• the happens-before order between w and ŵ is violated, or
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Fig. 5: ARBALEST Architecture

• an update operation, which is performed between w and

r in α, is reordered before w or after r.

Both cases indicate data races in β, which contradicts Hy-

pothesis 1 that the application is free of data races. Thus the

assumption cannot be satisfied, and Theorem 1 is proved.

V. ARBALEST

ARBALEST is implemented as an extension to Archer to reuse

the instrumentation pass, OMPT callbacks, and shadow memory

implementation. As shown in Figure 5, ARBALEST consists of

three modules: a) runtime data collection, b) dynamic analysis,

and c) bug report generation.

When analyzing an OpenMP application, ARBALEST uses

the ’x86 64-pc-linux-gnu’ target architecture in LLVM to

simulate the offloading of compute kernels and memory blocks.

Compute kernels are executed by a group of CPU threads, and

memory transfer is simulated by dynamic memory allocation

(malloc/free) and memory block copy (memcpy).

A. Runtime Data Collection

During the program execution, ARBALEST monitors the

invocation of OpenMP constructs as well as memory accesses

to mapped variables. It leverages the OMPT interface to capture

the invocation events of OpenMP constructs. Because the

OMPT implementation in LLVM 9.0 is incomplete for device

directives, ARBALEST uses an alternative OMPT implementa-

tion developed by researchers at Rice University1. For memory

accesses, ARBALEST utilizes Archer’s instrumentation pass.

The injected callbacks provide the details of memory accesses

(e.g., accessed memory location) to the dynamic analysis.

When implementing ARBALEST, we found that OMPT

does not provide correct mapping information for global

variables. We reported this omission to the OMPT committee.

We proposed that the OpenMP runtime should provide event

callbacks for those implicit data mappings, which are carried

out during the initialization of the runtime or the device. We

also reported some shortcomings in OMPT with respect to

data mapping and synchronization. For example, the callback

for the target construct does not distinguish synchronous and

1https://github.com/jmellorcrummey/llvm-openmp-5/

TABLE II: Shadow State in ARBALEST

Field Size
IsOVValid 1 bit
IsCVValid 1 bit
IsOVInitialized 1 bit
IsCVInitialized 1 bit
TID (Thread Id) 12 bits
Scalar Clock 42 bits
IsWrite 1 bit
Access Size (1, 2, 4 or 8) 2 bits
Address Offset (0..7) 3 bits

asynchronous target regions, which limits the possible dynamic

analysis for asynchronous compute kernels.

B. Shadow State

ARBALEST reuses Archer’s shadow memory implementation

to store the variable state. For every aligned 8-byte word of

application memory, Archer maps it into four shadow states
using direct address mapping. These four shadow states store

vector clocks for data race detection. ARBALEST reserves

the first four bits of a shadow state for data mapping issue

detection. The corresponding encoding is presented in Table II.

ARBALEST uses the first two bits to represent the states in

VSM. The following two bits are used for the bug report.

When reporting data mapping issues, ARBALEST also delineates

observed anomalies in the bug report. UUMs and USDs can

not be distinguished by VSM, so that ARBALEST uses two

additional bits to record the initialization of OV and CV,

respectively.

C. Bug Report

ARBALEST reuses the bug report template in Archer. When

a data mapping issue is detected, ARBALEST fills in corre-

sponding debugging information into the template to generate

a comprehensive bug report. An example of ARBALEST’s bug

report is present in Figure 7. The bug report illustrates the

observed anomaly, as well as the stack trace and memory

locations involved in the data mapping issue. Such information

can help programmers gain a better understanding of the

detected bug.

VI. EVALUATION

We validate the effectiveness of ARBALEST with two sets

of experiments. First, we compare ARBALEST’s precision with

other analysis tools using the DRACC benchmark suite [10].

Second, we compared ARBALEST’s performance relative to

four state-of-the-art dynamic analysis tools on SPEC-ACCEL

1.2 [25].

A. Compared Analysis Tools

To the best of our knowledge, currently there are no other

dynamic analysis tools designed for data mapping issues. The

closest work to ARBALEST is dynamic data race/memory error

detectors. These tools may capture a data mapping issue when

it leads to a data race/memory error. Similar to ARBALEST,

both data race detectors and memory error detectors consist
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of an instrumentation module and a shadow-memory-based

detection algorithm. The instrumentation module determines

the memory accesses to be checked, and the shadow memory

stores the status of memory locations at runtime.

To evaluate the precision and performance, we compared

ARBALEST with a state-of-the-art data race detector and three

memory error detectors: Valgrind [19], Archer [15], Address-

Sanitizer (ASan) [20], and MemorySanitizer (MSan) [21].

Valgrind is a dynamic instrumentation framework with a group

of debugging and analysis tools. Valgrind’s memcheck tool is a

widely-used memory anomaly detector for C/C++ applications.

Archer is a data race detector for OpenMP applications. It is

available in LLVM’s OpenMP sub-project as an extension to

the ThreadSanitizer (TSan) race detector. ASan and MSan are

another two tools from LLVM. ASan is capable of detecting

multiple kinds of memory errors (e.g., buffer overflow, use of

freed memory) while MSan is a dynamic detector for UUMs.

ARBALEST and the three tools from LLVM utilize the same tool

infrastructure (LLVM sanitizer infrastructure [22]) so that the

difference in implementation has less effect on the evaluation

results.

In our evaluation, we used Valgrind 3.15, Archer from LLVM

9.0, and ASan and MSan from LLVM 11.0. We selected tools

from different LLVM releases because ASan and MSan do

not work correctly before LLVM 11.0. They either crush or

report false alarms on a majority of OpenMP benchmarks. We

found that the program crash results from a segment fault in

the OpenMP runtime, and the false alarms are related to the

OpenMP constructs. For ASan and MSan from LLVM 11.0,

we did not observe similar issues in the evaluation. Currently

we are consulting the LLVM OpenMP team to locate the root

cause of these issues.

B. Experimental Setup

Our experimental machine is a compute node of the NEC

cluster. The machine has two 24-core Intel Platinum 8160

processors, 384 GB of memory, and two NVIDIA Volta GPUs,

running CentOS 7 (Linux 3.10.0). For precision comparison,

we conducted experiments on all 56 OpenMP benchmarks from

DRACC 1.02. For performance comparison, we measured the

time and space overhead for ARBALEST and the other four

tools, using five benchmarks from SPEC ACCEL 1.2. The

five benchmarks were compiled with Clang 9.0/11.0 at the

-O3 optimization level, and executed by 24 threads bound to

one socket. We skipped the other ten OpenMP benchmarks

in SPEC ACCEL 1.2 because Clang 9.0 cannot compile them

successfully.

C. Precision Evaluation on DRACC

Table III shows the precision comparison on 16 buggy

DRACC benchmarks. Each benchmark has a known data

mapping issue which will result in a memory error at run-

time. Column 1 records the benchmark ID (e.g., 22 refers

to benchmark DRACC OMP 022), column 2 describes the

2https://github.com/RWTH-HPC/DRACC

TABLE III: Effectiveness Comparison on DRACC Benchmarks

Benchmark ID Effect
Effectiveness

Arbalest Valgrind Archer ASan MSan

22, 24, 49, 50, 51 UUM - - -

23, 25, 28, 29, 30, 31 BO - -

26, 27, 32, 33, 34 USD - - - -

Overall 16/16 6/16 0/16 6/16 5/16

resulting memory error, and columns 3 - 7 describe the results

of ARBALEST and other dynamic analysis tools. In column 2,

UUM, BO, and USD stand for use of uninitialized memory,

buffer overflow, and use of stale data, respectively. In columns

3 - 7, ‘ ’ denotes the tool correctly reports the data mapping

issue, while ‘−’ denotes the data mapping issue is not detected.

Moreover. Table III skips the results on the other 40 DRACC

benchmarks because none of the five tools report a false positive

when the benchmark is free of data mapping issues.

ARBALEST outperformed the other four tools on precision.

ARBALEST precisely reported data mapping issues in all 16

benchmarks. Valgrind only reported 6 data mapping issues,

and Archer did not report any data mapping issues. ASan and

MSan detected 6 and 5 data mapping issues out of the 16

known bugs. Apart from ARBALEST, each tool can only tackle

a subset of data mapping issues. Besides, only ARBALEST

detected the data mapping issues in the third row. For

DRACC OMP 026, DRACC OMP 027, DRACC OMP 032,

and DRACC OMP 033, the data mapping issues finally result

in USDs in the program execution. Since none of the other

four tools take USDs into account, they failed to capture the

manifested data mapping issues. For DRACC OMP 034, the

data mapping issue leads to a UUM in a compute kernel. MSan

and Valgrind missed this bug, even if they are designed for

UUMs. It turned out that MSan and Valgrind did not precisely

model the semantics of all OpenMP constructs due to the lack

of OMPT.

D. Experiment on 503.postencil

We applied a real-world data mapping issue to measure

ARBALEST’s effectiveness further. 503.postencil is a perfor-

mance benchmark from the SPEC-ACCEL benchmark suite.

According to the changelog [28], there exists a data mapping

issue in the 1.2 version. The buggy code snippet is shown

in Figure 6. The function cpu stencil is a compute kernel.

After launching it in line 137, the host program swaps the

pointers of the two variables which have been mapped to the

accelerator. The swap operation makes the two variables’ CVs

inconsistent with their OVs. In odd iterations, the calculation

results on the accelerator will not be copied back to the correct

OVs, which leads to a data mapping issue.

Figure 7 presents ARBALEST’s result on 503.postencil. The

stack trace indicates that there is a data mapping issue in line

139, which is the output function. The bug report demonstrates

that ARBALEST successfully detects the hidden data mapping

issue.
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124 float *h_A0 , *h_Anext;
125 int size = nx * ny * nz;
126 size_t alignment = SPEC_ALIGNMENT_SIZE;
127 h_A0 = memalign(alignment , sizeof(float)*size);
128 h_Anext = memalign(alignment , sizeof(float)*size);
129

130 generate_data(h_A0 ,nx ,ny ,nz ,0);
131 generate_data(h_Anext ,nx ,ny ,nz ,0);
132

133 #pragma omp target data map(to: h_A0 [0: size])
map(tofrom: h_Anext [0: size])

134 {
135 printf("start executing kernel\n");
136 for(int t=0; t<iteration; t++){
137 cpu_stencil(c0 ,c1 ,h_A0 ,h_Anext ,nx ,ny ,nz);
138 float *temp = h_A0;
139 h_A0 = h_Anext;
140 h_Anext = temp;
141 }
142 }
143

144 if (param ->outFile) {
145 outputData(param ->outFile ,h_Anext ,nx ,ny ,nz);
146 }

Fig. 6: Buggy Code Section in 503.postencil

.
/503.postencil.exe -o 512x512x64.out -- 512 512 64 3

CPU-based 7 points stencil codes****
Original version by Li-Wen Chang <lchang20@illinois.edu> and I-Jui Sung<sung10@illinois.edu>
This version maintained by Chris Rodrigues ***********
CONSUME ARG: - o
CONSUME ARG: - -
start executing kernel
==================
WARNING: ThreadSanitizer: data mapping issue (stale access) (pid=104822)
Read of size 4 at 0x7f140a27d000 by main thread:
#0 main ./ACCEL_install/benchspec/ACCEL/503.postencil/build/build_base_compsys.0000/main.c:145:5
(stencil_exe_base.compsys+0x4ba581)
#1 main ./ACCEL_install/benchspec/ACCEL/503.postencil/build/build_base_compsys.0000/main.c:145:5
(stencil_exe_base.compsys+0x4ba581)
#2 main ./ACCEL_install/benchspec/ACCEL/503.postencil/build/build_base_compsys.0000/main.c:137:7
(stencil_exe_base.compsys+0x4ba4b3)
#3 main ./ACCEL_install/benchspec/ACCEL/503.postencil/build/build_base_compsys.0000/main.c:137:7
(stencil_exe_base.compsys+0x4ba4b3)
#4 main ./ACCEL_install/benchspec/ACCEL/503.postencil/build/build_base_compsys.0000/main.c:137:7
(stencil_exe_base.compsys+0x4ba4b3)
#5 __libc_start_main <null> (libc.so.6+0x22504)
#6 __libc_start_main <null> (libc.so.6+0x22504)
#7 __libc_csu_init <null> (stencil_exe_base.compsys+0x4bd58c)

Location is heap block of size 67108864 at 0x7f140a07c000 allocated by main thread:
#0 memalign ./OpenMP/llvm/projects/compiler-rt/lib/tsan/rtl/tsan_interceptors.cc:792:3
(stencil_exe_base.compsys+0x423c5a)
#1 main ./ACCEL_install/benchspec/ACCEL/503.postencil/build/build_base_compsys.0000/main.c:127:16
(stencil_exe_base.compsys+0x4ba1e5)
#2 __libc_start_main <null> (libc.so.6+0x22504)
#3 __libc_start_main <null> (libc.so.6+0x22504)
#4 __libc_csu_init <null> (stencil_exe_base.compsys+0x4bd58c)
SUMMARY: ThreadSanitizer: data mapping issue (stale access)
./ACCEL_install/benchspec/ACCEL/503.postencil/build/build_base_compsys.0000/main.c:145:5 in main
==================

Fig. 7: ARBALEST’s Output on 503.postencil

E. Time Overhead

Since DRACC benchmarks are not designed for performance

evaluation, we carried out the performance comparison on

SPEC-ACCEL benchmarks. Figure 8 shows the execution time

of each tool. “Native-GPU” and “Native-CPU” denote the

original execution time on the NVIDIA GPU and CPU.

On all benchmarks, ARBALEST incurred similar overheads

with Archer. Since data race detection is much more expen-

sive, ARBALEST’s execution time is dominated by Archer’s

race detection routine. ARBALEST outperformed Valgrind on

three benchmarks (504.polbm, 514.pomriq, and 554.pcg) and

achieved similar execution time on the other two benchmarks.

Valgrind uses dynamic binary instrumentation to monitor the

Fig. 8: Time Overhead on SPEC ACCEL

Fig. 9: Space Overhead on SPEC ACCEL

program execution. Therefore the overhead is much higher than

the LLVM-based compile-time instrumentation. In addition,

ARBALEST’s performance is close to ASan and MSan on two

benchmarks.

In total ARBALEST incurred 3.32× - 120.2×s slowdown to

the native execution on the CPU. Considering the precision of

ARBALEST, the time overhead is acceptable. Currently we make

ARBALEST a pure dynamic analysis tool. In the future, we will

apply some static analysis techniques to improve ARBALEST’s

performance further.

F. Space Overhead

Figure 9 lists the memory usage on five SPEC-ACCEL

benchmarks. Since all tools except Valgrind utilize the same

shadow memory implementation in the LLVM sanitizer frame-

work, the incurred space overheads are quite close. ARBALEST

encodes its own state into Archer’s shadow state when detecting

data mapping issues, so that ARBALEST should not incur

additional space overhead. On all benchmarks except 552.pep,

ARBALEST‘s memory usage is close to Archer, which matches

our expectations. On 552.pep, ARBALEST incurred significant

space overhead to the program execution. We estimate that

ARBALEST’s operations on the shadow state have a negative

effect on the shadow state eviction policy. We are working

on this benchmark to locate the root cause of the unexpected

space overhead.
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G. Comparison with Static Data Mapping Issue Detection

OMPSan [29] is a static data mapping issue detector for

OpenMP applications. It assumes that the serial elision property

is held in OpenMP3. By comparing an OpenMP application’s

dataflow with the serial elision version, OMPSan reports all

inconsistent def-use relations as data mapping issues. As a

static analysis tool, OMPSan reasons about the dataflow without

actually running the OpenMP application, so that the overhead

is relatively low.

Because OMPSan is still in the development phase, we did

not find an available release. We have contacted OMPSan’s

authors to get the evaluation results. The authors confirmed that

OMPSan pinpointed all 16 known data mapping issues in the

DRACC benchmark suite. However, OMPSan missed the data

mapping issue in 503.postencil because of the complex dataflow.

OMPSan’s effectiveness relies heavily on the alias analysis

pass. Due to the lack of runtime information, OMPSan’s alias

analysis may generate inaccurate results, which further leads

to false positives and false negatives.

VII. RELATED WORK

In this section, we relate our work to the state-of-art studies

in three areas, including data mapping issue detection, cache

coherence, and programming models similar to OpenMP.

A. Data Mapping Issue Detection and Cache Coherence

Unlike ARBALEST and OMPSan, prior work has proposed

other schemes to tackle data mapping issues, for example, data

mapping issue avoidance. X10CUDA [30] and OpenARC [31]

are two compiler frameworks applying automatic memory

management to avoid data mapping issues. The underlying

runtime tracks the coherence status of shared data using a state

transition diagram, which is similar to ARBALEST. Necessary

memory transfers are inserted into the application to avoid data

mapping issues. However, X10CUDA and OpenARC track the

coherence status at a coarse granularity for better performance

(a single state for the whole array section), and neither of

these two works takes asynchronous compute kernels into

consideration.

OpenMP’s data mapping can be viewed as a form of

software cache coherence. Inspired by cache coherence pro-

tocols, ARBALEST applies a state machine to track each

mapped variable’s status. Cache coherence has been well

studied in the past decades [32]. Corresponding techniques

are wildly used in dynamic analysis tools to detect and repair

memory vulnerabilities. Given the popularity of heterogeneous

architectures and parallel applications, recent research also

focuses on flexible coherence interfaces for cache coherence

protocols [33]. These coherence interfaces are applicable for

a wide range of devices while the incurred overhead is low.

ARBALEST may also leverage an available coherence interface

to embed the state machine into the cache line state, making

data mapping issue detection much more efficient.

3With certain OpenMP constructs/clauses, the serial elision property does
not hold, e.g., using firstprivate variables in OpenMP tasks.

B. Data Consistency Issue in MPI applications.

OpenMP data mapping issues can be understood as data

consistency issues that also arise in other parallel programming

models. In [34], Hoefler et al. formalized the semantics of

one-sided communication operations in MPI 3.0. Considering

MPI defines two distinct memory models, the unified memory
model and the separate memory model, in the specification,

the authors reasoned about each memory model’s effect on

one-sided communication operations respectively. The unified

memory model relies on hardware-managed data consistency,

making MPI applications free of data consistency issues. On

the other hand, the separate memory model enforces that the

consistency of associated memory regions, which may reside

on different nodes, is correctly managed by programmers.

Therefore incorrect usage of MPI constructs in the separate

memory model may result in data consistency issues.

Currently, ARBALEST cannot tackle MPI constructs, but

the VSM based detection algorithm is still applicable to MPI

applications. The algorithm can be integrated into a dynamic

MPI anomaly detector (e.g., MUST [16]) to pinpoint data

consistency issues in MPI applications.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we comprehensively analyze data mapping

issues in OpenMP applications and propose ARBALEST, an on-

the-fly data mapping issue detector. ARBALEST can precisely

report data mapping issues in an OpenMP application while

incurring constant time and space overhead to the program

execution. For a given input, ARBALEST can find out data

mapping issues in all possibles schedules. The evaluation on a

set of open-source benchmarks shows that ARBALEST correctly

handles all OpenMP constructs and incurs acceptable time and

space overhead.

Furthermore, we identified several OMPT’s shortcomings

related to target offloading in the OpenMP specification. We

worked together with the OMPT committee in refining OMPT’s

interface to expose all synchronization semantics necessary for

our analysis.

For future research, we plan to combine some static analysis

techniques with ARBALEST to improve the efficiency of

dynamic data mapping issue detection. We also plan to extend

ARBALEST further to support other accelerator programming

models, such as OpenACC and Kokkos.
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