
DataRaceOnAccelerator – A
Micro-benchmark Suite for Evaluating

Correctness Tools Targeting Accelerators

Adrian Schmitz1(B) , Joachim Protze1 , Lechen Yu2 ,
Simon Schwitanski1 , and Matthias S. Müller1

1 IT Center, RWTH Aachen University, Aachen, Germany
{a.schmitz,protze,schwitanski,mueller}@itc.rwth-aachen.de

2 Georgia Institute of Technology, Atlanta, USA
lechen.yu@gatech.edu

Abstract. The advent of hardware accelerators over the past decade has
significantly increased the complexity of modern parallel applications.
For correctness, applications must synchronize the host with accelera-
tors properly to avoid defects. Considering concurrency defects on accel-
erators are hard to detect and debug, researchers have proposed several
correctness tools. However, existing correctness tools targeting accelera-
tors are not comprehensively and objectively evaluated since there exist
few available micro-benchmarks that can test the functionality of a cor-
rectness tool.

In this paper, we propose DataRaceOnAccelerator (DRACC), a
micro-benchmark suite designed for evaluating the capabilities of cor-
rectness tools for accelerators. DRACC provides micro-benchmarks for
common error patterns in CUDA, OpenMP, and OpenACC programs.
These micro-benchmarks can be used to measure the precision and recall
of a correctness tool. We categorize all micro-benchmarks into different
groups based on their error patterns, and analyze the necessary runtime
information to capture each error pattern. To demonstrate the effec-
tiveness of DRACC, we utilized it to evaluate four existing correctness
tools: ThreadSanitizer, Archer, GPUVerify, and CUDA-MEMCHECK.
The evaluation results demonstrate that DRACC is capable of revealing
the strengths and weaknesses of a correctness tool.

Keywords: Micro-benchmark Suite · Error classification · Accelerator

1 Introduction

Hardware accelerators are becoming increasingly popular within high perfor-
mance computing area since the last decade. On the Top500 list, six out of the
top ten most powerful supercomputers are equipped with GPGPU or many-core
co-processors1. To leverage accelerators when developing parallel applications,
1 https://www.top500.org/.

c© Springer Nature Switzerland AG 2020
U. Schwardmann et al. (Eds.): Euro-Par 2019 Workshops, LNCS 11997, pp. 245–257, 2020.
https://doi.org/10.1007/978-3-030-48340-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48340-1_19&domain=pdf
http://orcid.org/0000-0002-7078-9516
http://orcid.org/0000-0003-0640-8966
http://orcid.org/0000-0002-8306-3028
http://orcid.org/0000-0001-7121-7205
http://orcid.org/0000-0003-2545-5258
https://www.top500.org/
https://doi.org/10.1007/978-3-030-48340-1_19

246 A. Schmitz et al.

programmers utilize parallel programming models such as CUDA, OpenACC,
and OpenMP. Those programming models ease the access to accelerators by their
built-in APIs and compiler directives, while exposing enough low-level details to
help tuning parallel applications. Nevertheless, the increasing complexity of pro-
grams results in higher chances of concurrency defects caused by incorrect usage
of underlying programming models. Due to the lack of suitable correctness tools
considering accelerators, concurrency defects may remain undetected in well-
tested parallel applications. As an example, our group just recently identified
and reported a mapping bug in the SPEC ACCEL OMP benchmark application
503.postencil [8], which we condensed to the reproducer in Listing 1. The code
mimics an iterative solver with a dynamic break condition and works on two
arrays where the output of one iteration is the input for the next iteration. In
this code, the swap in line 6 has no effect on the map clause and therefore for
the map-from at the end of the target data region. The code always maps the
array originally addressed by p1 back to the host; for odd numbers of iterations,
p2 points to that array afterwards, while p1 points to the unmodified original p2
array. Because of the pointer swap, the code expects p1 to point to the result of
this kernel.

Over the past years, a handful of correctness tools targeting concurrency
defects on accelerators were presented, for example, GPUVerify [3], BAR-
RACUDA [5], CUDA-MEMCHECK, and CURD [15]. Those correctness tools
demonstrate the feasibility of detecting concurrency defects on accelerators. In
this paper, we present DataRaceOnAccelerator (DRACC), a micro-benchmark
suite designed to evaluate correctness tools objectively. DRACC focuses on possi-
ble concurrency defects in CUDA, OpenACC, and OpenMP programs. It covers
common error patterns of concurrency defects incurred by conflicting memory
accesses.

In summary, we make the following contributions:

– We present the micro-benchmark suite DRACC to evaluate correctness tools
targeting accelerators;

– We thoroughly analyze the coverage of error patterns in DRACC by describ-
ing the mapping between micro-benchmarks to error pattern classifications
proposed in previous work [11,14] and extending upon them by introducing
mapping defects and a new categorization;

1 #pragma omp target data map(to:p2[0:N]) map(tofrom:p1[0:N])

2 { do {

3 #pragma omp target parallel for

4 for (int i = 0; i < N; i++)

5 p2[i] = 42 + p1[i];

6 std::swap(p1 , p2); // executed on the host

7 } while (!done());

8 } // end of target data region: map(from:p1[0:N])

Listing 1. Mapping bug found in a SPEC ACCEL benchmark

DataRaceOnAccelerator 247

– We introduce five levels of available information to understand the require-
ments and possibilities of analyzing each error pattern;

– We used DRACC to evaluate existing correctness tools: ThreadSanitizer [16,
17] and Archer [1], GPUVerify, and CUDA-MEMCHECK.

2 DataRaceOnAccelerator

Liao et al. [9,10] developed a benchmark suite, DataRaceBench, for data races
in OpenMP. DataRaceBench is designed to test data race detectors for their
capabilities of finding data races in OpenMP programs. This benchmark suite
has been widely applied in the development and evaluation of OpenMP data
race detectors [2,7].

Inspired by DataRaceBench, DRACC covers common memory driven defects
on heterogeneous systems in CUDA, OpenMP, and OpenACC programs.
DRACC provides a group of micro-benchmarks, developed upon following pro-
gramming models and compilers: CUDA 9.1 with NVCC, OpenACC 2.6 with
PGI compiler 18.4 and OpenMP 4.5 with Clang 7.0. The micro-benchmarks for
DRACC are synthesized instances of the error patterns discussed in Sect. 3.

The complete micro-benchmark suite is available at Github2 and can be
compiled with the given Makefile for each programming model. All micro-
benchmarks are designed based on specifications of abovementioned program-
ming models. Thus, erroneous runtime implementations violating specifications
may lead to unexpected results.

Listing 2 shows three kernels encountering an atomicity violation on the
accelerator. Each of these kernels implements the same error pattern leading to
an undefined value of the countervar variable. This failure is caused by the con-
current increment of the same variable countervar/d countervar. For OpenMP
and OpenACC the variable is globally accessible on the accelerator, causing a
data race among the individual steps of the increment: read to a register, incre-
ment in a register, write to global memory. A further explanation of the error
pattern is presented in Sect. 3.

The CUDA implementation in Listing 2 behaves differently from the
OpenMP and OpenACC implementations. The device variable d countervar is
not explicitly defined as a global variable for CUDA, thus, each thread creates
a thread-private copy of the variable, which is incremented accordingly. Due to
CUDA’s memory model, the result from each thread will then be copied back to
the original variable. This results in a data race between the copy operations and
a result of exactly d countervar = 1 for each execution regardless of grid and block
dimension. Similar to the OpenMP and OpenACC kernel, the CUDA kernel also
implements an atomicity violation.

2 https://github.com/RWTH-HPC/DRACC.

https://github.com/RWTH-HPC/DRACC

248 A. Schmitz et al.

1 __global__ void count_kernel(int *d_countervar){

2 d_countervar [0]++;

3 }

4 void count (){// Launch CUDA Kernel

5 count_kernel <<<100,512>>>(d_count);}

1 void count (){// OpenACC Kernel

2 #pragma acc parallel copy(countervar) num_workers (256)

3 #pragma acc loop gang worker

4 for (int i=0; i<N; i++)

5 countervar ++;}

1 void count (){// OpenMP Kernel

2 #pragma omp target map(tofrom:countervar) device (0)

3 #pragma omp teams distribute parallel for

4 for (int i=0; i<N; i++)

5 countervar ++;}

Listing 2. Examples of an atomicity violation on the accelerator in CUDA, OpenACC
and OpenMP.

3 Classification

To understand the coverage of micro-benchmarks in DRACC, in this section we
introduce a defect classification for application errors on heterogeneous systems.
The classification shown in Fig. 1 is based on the study of Shan Lu et al. on
concurrency defects [11] and the error classification by Münchhalfen et al. [14].
The classification focuses on common application errors to provide a foundation
for future tool support on accelerators. Additionally, to differentiate between
cause and effect of an error, we utilize the notation by A. Zeller [19] that failure
is the manifestation of an error, e.g., non-deterministic results or a blocking
application; and defect is the source of an error, e.g., incorrect source code.

The classification is designed to cover defects for application-programming
purposes, especially regarding CUDA, OpenACC, and OpenMP programs. Syn-
tactic correctness of the code as well as the validation of the programming model
implementation, i.e., compiler and runtime, are out of scope for this work.

3.1 Overview

Using parallel programming paradigms can introduce new kinds of defects
which are finally observed as failures. These are either segmentation faults or
non-deterministic results. In Fig. 1 an overview of the defect classification is
presented. All accelerator application defects belong to one of the following
categories:

DataRaceOnAccelerator 249

Memory Access Issue

On Accelerator

Inter Team

Concurrency Defect:
-Atomicity Violation

-CUDA: 3
-OACC: 5
-OMP: 13

-Order Violation
-CUDA: 2
-OACC: 8
-OMP: 5

Intra Team

Concurrency Defect:
-Atomicity Violation

-CUDA: 4
-OACC: 5
-OMP: 15

-Order Violation
-CUDA: 2
-OACC: 8
-OMP: 7

Non-
Concurrency
Defects:

-CUDA: 1
-OACC: 1
-OMP: 3

Between Multiple
Accelerators

Concurrency Defect:
-Atomicity Violation
-Order Violation

Between Host and
Accelerator

Mapping
Defect

Stale Data Access

Outdated
Data:

-CUDA: 3
-OACC: 4
-OMP: 4

Missing
Data:

-CUDA: 3
-OACC: 4
-OMP: 4

Wrong Data
Allocation

Missing
Memory
Allocation:

-CUDA: 2
-OACC: 1
-OMP: 1

Failed
Allocation:

-CUDA: 1
-OACC: 1
-OMP: 1

Out of Bounds
Mapping:

-CUDA: 2
-OACC: 4
-OMP: 4

Missing
Memory
Deallocation:

-CUDA: 1
-OACC: 1
-OMP: 1

Concurrency Defect:
-Atomicity Violation

-CUDA: 1
-OACC: 1
-OMP: 1

-Order Violation
-CUDA: 2
-OACC: 1
-OMP: 1

Fig. 1. A classification of common memory access defects in heterogenous comput-
ing. The number behind CUDA, OACC and OMP describes the number of micro-
benchmarks that expose the corresponding defect class for the given programming
model. Each micro-benchmark contains only a single defect.

1. On Accelerator: defects on the accelerator, independent of any other device.
2. Between Host and Accelerator: defects within the communication between

host and device.
3. Between Multiple Accelerators: defects within the communication between

multiple devices.

In this paper, we focus on the first two categories. Figure 1 provides an overview
of the number of micro-benchmarks for each defect pattern per programming
model. Since OpenMP allows the use of critical sections and locks on the device,
we find more different error patterns for OpenMP.

3.2 Concurrency Defects

Concurrency defects as defined in [11], classify defects caused by concurrency. A
non-deadlock concurrency defect can either be an atomicity violation or an order
violation. Atomicity violation means that the intended atomicity of a group of
memory accesses is not enforced. Order violation means that the intended order
of two groups of memory accesses is potentially inverted, i.e., the intended order
is not enforced. In this context memory accesses include memory reads, writes,
allocations, and deallocations.

3.3 On Accelerator

Accelerator programming models typically provide similar high-level abstrac-
tions for program execution. An application is executed by a number of threads
which are further divided into multiple groups. Threads belonging to the same

250 A. Schmitz et al.

group can synchronize with each other, while threads from distinct groups exe-
cute independently. In this paper, we use the term team from OpenMP to refer
to the notion of group (OpenMP team, OpenACC gang, and CUDA thread block
express the same notion as group).

For defects on accelerators we define three classes: Intra team concurrency
defects are bugs that occur within the same team of threads. In contrast, inter
team concurrency defects are bugs between multiple teams of threads. Finally,
non-concurrency defects are those defects that are not caused by concurrency,
e.g., stack buffer overflows.

In general, defects occurring on CPUs may also happen on accelerators. Con-
sidering the overall architectures of hardware accelerators are vastly different
from CPUs, we distinguish inter and intra team concurrency defects to clarify
differences of corresponding failures.

3.4 Between Host and Accelerator

Defects between host and accelerator include order violations in the synchroniza-
tion between host and accelerator, and atomicity violations for asynchronous ker-
nels. In addition, for OpenMP atomicity violations may reside in synchronous
kernels due to memory abstraction. The memory abstraction might hide the
actual usage of unified or separate memory. Therefore an application relying on
a specific implementation of OpenMP runtime may encounter atomicity viola-
tions.

Another defect class between host and accelerator are mapping defects. Map-
ping defects cover all defects related to data movement between host and accel-
erator. In different paradigms data movement is expressed by API functions or
clauses for copy or mapping.

Some defects can be classified into both stale data access and wrong data
allocation, for example, an asynchronous data movement conflicting with con-
current memory accesses. For those defects we treat it as concurrency defects.

Stale Data Access. Defects where data was not copied to or updated at
the desired destination are defined as stale data access. Therefore, on host or
accelerator data is missing. We distinguish missing data, where necessary data
is not copied to the device; and outdated data, where data is changed on one
device but not updated to the other device before accessing the data there.
The example in Listing 1 shows the latter pattern, although it is not the root
cause. Concurrent access to the same memory by both sides can be understood
as outdated data in case of separate memory or concurrency defect in case of
unified memory.

Wrong Data Allocation. Defects related to the allocation or deallocation of
memory, that are not already covered by concurrency defects, are defined as
wrong data allocation. We identified four different kinds of defects. When the
application misses to check for a failed allocation and tries to use this memory

DataRaceOnAccelerator 251

afterwards we call this failed allocation. We find out of bounds mapping, when
the memory allocation on either side is smaller than the requested size for the
mapping or copy. On missing memory deallocation, allocated memory is not
deallocated at the end of execution which results in memory leaks. We call it
missing memory allocation if no memory is allocated for transferred data before
the first access on the device.

4 Information Usage

To analyze and detect the various defects described in the previous section and
exposed in the provided micro-benchmarks, more or less detailed information
is necessary. In this section, we discuss different levels of information which
can be observed by an analysis tool. Although this might be obvious to tool
developers, we believe, the following might help tool users to better understand
the possibilities, limitations, and runtime overhead of specific tools. The different
levels of information come with different runtime overhead and different impact
on the execution. Furthermore, we classify the previously introduced defects for
their necessary levels of observable information.

4.1 Five Levels of Observable Information

The five levels of observable information are a classification of the information
needed to detect the defined defect classes from the prior section. An overview of
the levels is given in Fig. 2. Each level consists of information about events in a
program, whereby an event can be any observed instruction during the execution
of a program. The different levels build up a hierarchy, i.e., each higher level
includes all information of the corresponding lower levels. The five levels cover
the following information:

1. Ordering: Information on the causality of events is available such that a tool
can derive a happened-before relation for the events of an execution.

2. Memory Management: Memory allocations and data movement are tracked;
this includes source, destination, and size (if applicable).

1. Ordering

2. Memory Management

3. Data Access

a. Intra Team b. Inter Team

4. Host Level Granularity

5. Merged Level Granularity Tool Level

CUDA-MEMCHECK 1 - 4aa

Archer 1 - 4
ThreadSanitizer 1 - 4
GPUVerify Noneb

a shared memory only
b static tool

Fig. 2. The five levels of observable information and their dependencies on the left.
Supported levels for all evaluated tools on the right.

252 A. Schmitz et al.

3. Data Access: Memory location accesses are tracked on host and accelerator
(read or write).

4. Host Level Granularity: In this level we distinguish Intra Team Granularity,
when events within a group of threads (thread block/team/gang) can be
attributed to the individual thread; and Inter Team Granularity when events
within different groups of threads can be attributed to the group of threads.

5. Merged Level Granularity: The system is monitored as a whole allowing the
differentiation between all threads on all devices when accessing the unified
memory space.

4.2 Pattern Identification

In most cases, a tool will not be able to identify the concrete defect in the code,
but in the best case pinpoint its location. The different defects result in different
suspicious behavior which a tool is able to detect. This section presents for each
level of information which of the previously discussed error patterns it can detect.

1. Ordering. Information on the causality of events enables a tool to detect
simple order violations between host and device events. An example could be a
program moving data from the host to device before any memory is allocated on
the device. Since there is no further information on the address and size of the
allocated memory regions, the detection capabilities of a tool with this restricted
information are limited.

2. Memory Management. In case a tool tracks memory allocations and data
movement in addition to just the ordering of events, it can detect all subclasses
belonging to the Wrong Data Allocation class.

A tool can identify Missing Memory Allocation defects by testing if trans-
ferred memory at the destination has been allocated before the actual data
movement. If the corresponding memory is only allocated afterwards, an order
violation between host and accelerator could be diagnosed. Missing Data Deal-
location defects can be detected by testing if the memory is released before the
connection to the accelerator is closed. Failed Allocation defects can be detected
by tracking if memory allocations result in errors. Subsequent null pointer access
could be diagnosed as a potentially unhandled failed allocation. Out of bounds
mapping defects can be detected by comparing the size of the data to be trans-
ferred, the size of allocated memory on source and destination, respectively.

3. Data Access. Tracking all memory accesses including their ordering on both
host and device allows a tool to identify all patterns of the Stale Data Access
class: Missing data defects can be diagnosed if data is read on the accelerator
which is neither initialized nor copied from the host. If either is done after the
access, an order violation is observed. Outdated data defects can be detected,
when data is altered (write access) on one side but not updated to the other side

DataRaceOnAccelerator 253

before access. In both cases, information from the data access level is necessary
to detect stale data access.

The data access level is also sufficient to detect order violations related to
data mappings between host and accelerator, because no attribution to certain
threads or groups of threads is required to identify this issue.

4. Host Level Granularity. In case of concurrency defects, namely atomicity
violations and order violations, it is not enough to just track memory location
accesses on the accelerator: A tool also has to attribute them to the originating
thread within a group of threads (intra team) or to attribute them to the group
of threads in case of multiple teams (inter team). If this information is available
and additionally all kinds of possible synchronization constructs are tracked
(e.g., exclusive accesses), then atomicity violations and order violations on the
accelerator can be detected. If a concurrency defect within a group of threads
should be detected, then intra team granularity is required. If a concurrency
defect between groups of threads should be identified, then inter team granularity
is required.

5. Merged Level Granularity. This granularity level is only required for
atomicity violations and computation related order violations in case of unified
memory between host and accelerator. Since any thread on any device can be
synchronized to another thread on another device, differentiation of memory
accesses and synchronization between all threads on all devices accessing the
unified memory space must be possible.

5 Tool Evaluation

To understand the support level of correctness tools for accelerator program-
ming, we used DRACC to evaluate a set of existing tools, namely: Thread-
Sanitizer [16,17] delivered with LLVM 7.0, Archer [1] in a development version
compatible with LLVM 7.03, GPUVerify [3] in version 2016-03-284, and CUDA-
MEMCHECK5 as delivered with CUDA 9.1. We carried out the experiments on
Tesla P100 graphic cards on the CLAIX cluster at the RWTH Aachen Univer-
sity. Considering the supported programming models of these tools, we tested
ThreadSanitizer and Archer with OpenMP micro-benchmarks, GPUVerify with
CUDA micro-benchmarks, and CUDA-MEMCHECK with all three groups of
micro-benchmarks. The supported levels of observable information for each tool
are presented in Fig. 2.

Table 1 gives an overview of the evaluation results. It lists the counts of
correct alerts (true positives, TP), false alerts (false positives, FP), error free

3 https://github.com/PRUNERS/openmp/tree/archer 70 (303a691).
4 http://multicore.doc.ic.ac.uk/tools/GPUVerify/download.php.
5 https://docs.nvidia.com/cuda/cuda-memcheck/index.html.

https://github.com/PRUNERS/openmp/tree/archer_70
http://multicore.doc.ic.ac.uk/tools/GPUVerify/download.php
https://docs.nvidia.com/cuda/cuda-memcheck/index.html

254 A. Schmitz et al.

(true negatives, TN), and omission (false negative, FN). Based on these counts,
we calculated the metrics Precision (P = TP

TP+FP) and Recall (R = TP
TP+FN).

Since ThreadSanitizer and Archer do not support data race analysis on
the accelerator, we force the OpenMP target regions in the OpenMP micro-
benchmarks to be executed on the host. For both tools we compile the bench-
mark with the flag -fsanitize=thread, and for Archer we additionally load the
Archer runtime library during execution. 20 out of 50 OpenMP error patterns
are detected by both Archer and ThreadSanitizer, and they identify the same
group of error patterns. The LLVM OpenMP implementation decides to only
run a single team for the teams construct, therefore no issues in the inter team
concurrency micro-benchmarks can be observed. Mapping defects are not under-
stood by the tools, but can lead to segmentation faults. No false alerts are
reported by either tool. The error patterns detected by the tools are the kind
of errors which would also be detected for host code, which could be derived by
removing the target regions from these micro-benchmarks.

CUDA-MEMCHECK does not detect any defect in the CUDA version of
DRACC, although some micro-benchmarks result in CUDA errors. Thus, 0 of
the 26 CUDA pattern implementations are detected by this tool. According to
the documentation this tool can detect data races in shared device memory.
For the same reason, the tool cannot detect most data races in OpenMP or
OpenACC micro-benchmarks of DRACC. However, for OpenMP tests CUDA-
MEMCHECK detects a generic defect during the initialization of the target
region, which is disregarded in Table 1. CUDA-MEMCHECK can detect out of
bounds memory mapping from the device to the host in OpenMP and OpenACC.

Since GPUVerify supports two usage modes, -findbugs and -verify, we tested
these two modes on DRACC irrespectively. In both two usage modes, GPUVerify
correctly detected 7 out of 26 CUDA error patterns, reported one false alarm,
and failed to tackle the remaining 18 CUDA error patterns. For intra team
and inter team atomicity violations, GPUVerify pinpointed these concurrency
defects and generated a counter example for each concurrency defect. When
analyzing the micro-benchmark for stack overflow, GPUVerify reported a false
alarm that the micro-benchmark may encounter null-pointer memory access.
A possible explanation for this false alarm is that GPUVerify does not model
memory accesses in recursive function invocations correctly. For the remaining
18 CUDA error patterns, GPUVerify reported internal errors when analyzing the
corresponding micro-benchmarks. The reason for internal errors is these CUDA
error patterns are related to stale data access and wrong data allocation, while
GPUVerify currently only checks data races and barrier divergence. In addition,
some micro-benchmarks use new atomic operations introduced in CUDA 8.0.
Since the 2016-03-28 version of GPUVerify is released earlier than CUDA 8.0,
GPUVerify cannot recognize these atomic operations, which leads to internal
errors.

In summary, DRACC successfully evaluated the functionality of four correct-
ness checking tools. The observed result matches our expectation based on the
description in the documentation.

DataRaceOnAccelerator 255

Table 1. Analysis results of DRACC on four different tools, values given for CUD-
A/OpenACC/OpenMP

Tool TP FP TN FN P[%] R[%]

ThreadSanitizer -/-/26 -/-/0 -/-/7 -/-/23 -/-/100 -/-/53

Archer -/-/26 -/-/0 -/-/7 -/-/23 -/-/100 -/-/53

GPUVerify 7/-/- 1/-/- 3/-/- 18/-/- 87.5/-/- 28/-/-

CUDA-MEMCHECK 0/2/3 0/1/0 3/9/7 26/31/46 0/67/100 0/6/6

6 Related Work

Münchhalfen et al. [14] published an error classification of OpenMP programs
and solutions for the detection. The main focus of their work is OpenMP. Offload-
ing with OpenMP is also considered in their classification, as part of data trans-
fer errors and data races. The classification in our work covers offloading with
OpenMP, OpenACC, and CUDA.

Friedline et al. [6] developed a test suite to validate OpenACC implementa-
tions and corresponding features in OpenACC 2.5. Their work provides a vali-
dation test suite for compiler architects and programmers. This validation test
suite is designed for multiple hardware architectures to test the portability of
OpenACC code between these architectures.

Similar test suites for OpenMP have been developed by Müller et al. for
OpenMP 2.0 [12] and OpenMP 2.5 [13]. These two test suites aim to cover
the complete standard and valid combinations of OpenMP constructs. Wang et
al. [18] developed a validation test suite for OpenMP 3.1. For OpenMP 4.5 Diaz
and Pophale et al. [4] provided a validation test suite. These two validation test
suites can verify the correctness of runtime implementation according to the
specification.

7 Conclusion and Future Work

This paper introduced DRACC, a micro-benchmark suite containing common
concurrency defects in CUDA, OpenACC, and OpenMP programs. DRACC was
designed as a test suite for correctness tools to evaluate their functionalities. To
cover as many error patterns as possible, DRACC was developed based on error
pattern classifications from previous studies on concurrency defects. The eval-
uation of existing correctness tools demonstrates that DRACC can reveal the
strengths and limitations of a correctness tool being tested. The evaluation fur-
ther shows that proper tools supporting different levels of observable information
are required to detect the discussed error patterns in accelerator programming.

For future work, we plan to extend DRACC to other parallel programing
models which also support accelerators, for example, Kokkos and OpenCL. Fur-
thermore, we also plan to test correctness tools on other accelerators in addition
to Nvidia GPUs to conduct a more comprehensive evaluation.

256 A. Schmitz et al.

References

1. Atzeni, S., Gopalakrishnan, G., et al.: ARCHER: effectively spotting data races in
large OpenMP applications. In: 2016 IEEE International Parallel and Distributed
Processing Symposium, IPDPS, pp. 53–62 (2016)

2. Atzeni, S., Gopalakrishnan, G., et al.: SWORD: a bounded memory-overhead
detector of OpenMP data races in production runs. In: 2018 IEEE International
Parallel and Distributed Processing Symposium, IPDPS, pp. 845–854 (2018)

3. Betts, A., Chong, N., et al.: GPUVerify: a verifier for GPU kernels. ACM SIGPLAN
Not. 47, 113–132 (2012)

4. Diaz, J.M., Pophale, S., Hernandez, O., Bernholdt, D.E., Chandrasekaran, S.:
OpenMP 4.5 validation and verification suite for device offload. In: de Supinski,
B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP
2018. LNCS, vol. 11128, pp. 82–95. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98521-3 6

5. Eizenberg, A., Peng, Y., et al.: BARRACUDA: binary-level analysis of runtime
RAces in CUDA programs. SIGPLAN Not. 52(6), 126–140 (2017)

6. Friedline, K., Chandrasekaran, S., Lopez, M.G., Hernandez, O.: OpenACC 2.5
validation testsuite targeting multiple architectures. In: Kunkel, J.M., Yokota, R.,
Taufer, M., Shalf, J. (eds.) ISC High Performance 2017. LNCS, vol. 10524, pp.
557–575. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67630-2 39

7. Gu, Y., Mellor-Crummey, J.: Dynamic data race detection for OpenMP programs.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC 2018, pp. 61:1–61:12. IEEE (2018)

8. Juckeland, G., Grund, A., Nagel, W.E.: Performance portable applications for
hardware accelerators: lessons learned from SPEC ACCEL. In: IEEE International
Parallel and Distributed Processing Symposium Workshop (2015)

9. Liao, C., Lin, P.H., et al.: DataRaceBench: a benchmark suite for systematic evalu-
ation of data race detection tools. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2017.
ACM (2017)

10. Liao, C., Lin, P., et al.: A semantics-driven approach to improving DataRaceBench’s
OpenMP standard coverage. In: Evolving OpenMP for Evolving Architectures
(IWOMP 2018, Barcelona, Spain), pp. 189–202 (2018)

11. Lu, S., Park, S., et al.: Learning from mistakes - a comprehensive study on real
world concurrency bug characteristics. ACM SIGOPS Oper. Syst. Rev. 42(2), 329–
339 (2008)

12. Müller, M., Neytchev, P.: An OpenMP validation suite. In: Fifth European Work-
shop on OpenMP, Aachen University, Germany (2003)

13. Müller, M.S., Niethammer, C., et al.: Validating OpenMP 2.5 for Fortran and
C/C++. In: Sixth European Workshop on OpenMP (2004)

14. Münchhalfen, J.F., Hilbrich, T., Protze, J., Terboven, C., Müller, M.S.: Classifica-
tion of common errors in OpenMP applications. In: DeRose, L., de Supinski, B.R.,
Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766,
pp. 58–72. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11454-5 5

15. Peng, Y., Grover, V., et al.: CURD: a dynamic CUDA race detector. In: Proceed-
ings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 390–403. ACM (2018)

16. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: data race detection in practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications,
WBIA 2009, pp. 62–71. ACM (2009)

https://doi.org/10.1007/978-3-319-98521-3_6
https://doi.org/10.1007/978-3-319-98521-3_6
https://doi.org/10.1007/978-3-319-67630-2_39
https://doi.org/10.1007/978-3-319-11454-5_5

DataRaceOnAccelerator 257

17. Serebryany, K., Potapenko, A., Iskhodzhanov, T., Vyukov, D.: Dynamic race detec-
tion with LLVM compiler. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 110–114. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29860-8 9

18. Wang, C., Chandrasekaran, S., Chapman, B.: An OpenMP 3.1 validation testsuite.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 237–249. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30961-8 18

19. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Elsevier, Oxford
(2009)

https://doi.org/10.1007/978-3-642-29860-8_9
https://doi.org/10.1007/978-3-642-29860-8_9
https://doi.org/10.1007/978-3-642-30961-8_18
https://doi.org/10.1007/978-3-642-30961-8_18

	DataRaceOnAccelerator – A Micro-benchmark Suite for Evaluating Correctness Tools Targeting Accelerators
	1 Introduction
	2 DataRaceOnAccelerator
	3 Classification
	3.1 Overview
	3.2 Concurrency Defects
	3.3 On Accelerator
	3.4 Between Host and Accelerator

	4 Information Usage
	4.1 Five Levels of Observable Information
	4.2 Pattern Identification

	5 Tool Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

