
GT-Race: Graph Traversal Based Data
Race Detection for Asynchronous

Many-Task Parallelism

Lechen Yu and Vivek Sarkar(B)

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
{lechen.yu,vsarkar}@gatech.edu

Abstract. Asynchronous Many-Task (AMT) parallelism is growing in
popularity because of its promise to support future platforms with new
heterogeneity and resiliency requirements. It supports the construction
of parallel programs with fine-grained tasks, thereby enabling portability
across a wide range of platforms. However, applications written for AMT
parallelism still remain vulnerable to data races, and existing data race
detection tools are unsuitable for AMT programs because they either
incur intractably large overheads or are limited to restricted task struc-
tures such as fork-join parallelism.

In this paper, we propose GT-Race, a new graph-traversal based data
race detector for AMT parallelism. It leverages the computation graph
data structure, which encodes the general happens-before structures in
AMT programs. After introducing a baseline algorithm for data race
detection, we propose key optimizations to reduce its time and space
complexity, including the epoch adjacency list to compress the compu-
tation graph representation, the reachability cache combined with depth
filtering to reduce the number of unnecessary traversals, and bounded
race detection to limit the range of data that is monitored. The impact
of these optimizations is demonstrated for nine benchmark programs
written for the Open Community Runtime (OCR), an open source AMT
runtime that supports point-to-point synchronization and disjoint data
blocks.

Keywords: Debugging and correctness tools · Data race detection
Asynchronous many-task parallelism

1 Introduction

With the ever-increasing complexity of modern computing architectures (e.g.,
large numbers of heterogeneous processing units, multi-level hierarchical memo-
ries, and high-bandwidth interconnect networks), applications on these machines
must leverage the architectural complexity to perform efficiently. Although
widely used high-performance parallel runtimes (e.g., PThreads, MPI, and
OpenMP) provide comprehensive low-level interfaces to help programmers
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 59–73, 2018.
https://doi.org/10.1007/978-3-319-96983-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_5&domain=pdf


60 L. Yu and V. Sarkar

leverage the underlying architecture, the programmers have to tune the appli-
cation to select the best granularity manually. In addition, manually tuned
applications are not performance-portable. In order to mitigate these two prob-
lems, Asynchronous Many-Task (AMT) runtimes [1] (e.g., Cilk [2], Habanero-C
(HC) [3], Realm [4] and Open Community Runtime (OCR) [5]) become a new
trend in HPC area. AMT runtimes hide low-level details of architecture from
programmers. When writing a parallel program executing on top of AMT run-
times (we refer to it as AMT program in this paper), programmers only need
to split the program logic into tasks, a hardware agnostic abstraction of code
snippets that can execute independently on any process unit, and specify the
dependences among tasks. AMT programs can achieve higher performance with
less programming and tuning efforts, compared to MPI implementations [4].

Although AMT parallelism alleviates the difficulty of writing efficient and
portable parallel programs, AMT programs are still prone to data races, a noto-
rious error in parallel programs. A data race occurs when a parallel program
issues two unordered memory accesses to the same location, such that at least
one of the accesses is a write.

There has been a lot of past work on detecting data race automatically at
runtime [6–11]. But all of them suffer from at least one of the following four
limitations:

– Incurring a space overhead that is proportional to the square of the number
of dynamic tasks.

– Leveraging a locking scheme to detect data races, which introduces false pos-
itives for parallel programs that use synchronization primitives other than
locks.

– Forcing the parallel program to execute in sequential order, which wastes the
available hardware parallelism.

– Detecting data races based on restricted parallel structures.

Currently, there does not exist any data race detection algorithm with tractable
overhead that can support the general AMT parallelism.

In this paper, we propose GT-Race, a new graph-traversal based data race
detector for AMT parallelism. It leverages the computation graph data struc-
ture [12], which encodes the general happens-before structures in AMT pro-
grams. After introducing a baseline algorithm for data race detection, we propose
key optimizations to reduce its time and space complexity, including the epoch
adjacency list to compress the computation graph representation, the reacha-
bility cache combined with depth filtering to reduce the number of unnecessary
traversals, and bounded race detection to limit the range of data that is moni-
tored. The impact of these optimizations is demonstrated for nine benchmark
programs written for the Open Community Runtime (OCR), an open source
AMT runtime that supports point-to-point synchronization and disjoint data
blocks.

The rest of this paper is organized as follows: In Sect. 2 we discuss a case
study to show how an AMT program can encounter data races. Based on the
clarified notion of data race, we illustrate the graph traversal based race detection



GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 61

algorithm and several optimizations. We discuss the implementation of GT-Race
in Sect. 3. We evaluate the performance of GT-Race in Sect. 4. Section 5 sum-
marizes some related works about data race detection, and finally in Sect. 6 we
briefly conclude with some possible directions for future works.

2 GT-Race

In this section, we introduce GT-Race, an on-the-fly dynamic data race detector
for AMT programs. First, we illustrate the architecture of GT-Race, and then
we present several optimizations applied by GT-Race, which reduce the space
overhead and improve the efficiency of data race detection.

2.1 Computation Graph and Data Races

The constructs in an AMT program can be divided into three classes according
to their semantics:

– spawn constructs: They submit a new task to the underlying AMT runtime.
The new task may execute in parallel with the caller.

– synchronization constructs: They specify dependences among tasks that can
impact task scheduling in the AMT runtime. A task will be ready for execu-
tion after all its specified dependences are satisfied [13].

– computation constructs: All other constructs not related to task management
belong to this class.

In a computation graph for a dynamic AMT program execution, each node
denotes a step [12], an arbitrary sequential computation belonging to a task,
which ends with a spawn construct or a synchronization construct, and each
edge denotes an ordering constraint among the involved tasks. For any two steps
in the computation graph, the happens-before relation holds if and only if there
exists a directed path between the two steps. When two unrelated steps issue
memory accesses to the same shared variable, and at least one step writes to
that variable, the two memory accesses create a data race. Figure 1 shows how
data races can occur in an AMT program. Figure 1a is a buggy implementation
of parallel summation, and Fig. 1b is the corresponding computation graph. To
fix the program, we need to link t3 to t4 by a join edge to guarantee that t4 will
observe t3’s result.

2.2 Overview

Figure 2 shows GT-Race’s architecture. It comprises three components: computa-
tion graph, shadow memory, and data race checker. The computation graph and
shadow memory update dynamically according to the AMT program’s runtime
behaviors. These two components record happens-before relations and historical
memory accesses respectively. Our implementation of shadow memory is similar



62 L. Yu and V. Sarkar

(a) A problematic implementation of par-
allel summation containing a data race

(b) Corresponding computation graph for
the AMT program in Figure 1a

Fig. 1. Case study

to [14]. In order not to miss potential data races, the shadow memory records
the latest write and all reads after the write for each shared memory location.
The key module of GT-Race is the data race checker, which leverages the data
in the computation graph and shadow memory to analyze the order of memory
accesses. For each read (write) to a shared variable, the data race checker carries
out a graph traversal on the computation graph to verify the read is causally
ordered after the concurrent write(concurrent write and all concurrent reads).
If the graph traversal fails to find any paths between the concurrent memory
accesses, GT-Race will output the associated debug information of the conflict-
ing memory accesses and the computation graph to help programmers figure out
the cause of the detected race.

2.3 Epoch Adjacency List: A Compressed Representation
for Computation Graph

Since the computation graph is a sparse graph, a straightforward way to store it is
by using an adjacency list. Due to the large number of steps a task may contain,
it is not memory efficient to allocate a list for each step. Further, explicitly
storing all steps and edges may also slow down the graph traversal because of
the redundant continue edges.



GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 63

Since all steps in the same task execute sequentially, we can determine their
execution order in constant time by numbering steps belonging to the same task
(we refer to these numbers as epochs). Inspired by this idea, we propose the
epoch adjacency list, a compressed storage for computation graphs. In an epoch
adjacency list, each task occupies an edge list that records incoming spawn and
join edges. For each edge in the edge list, the associated cell marks its source
step using the source task ID and epoch.

2.4 Optimization: Reachability Cache

Fig. 2. GT-Race architecture

The original graph traversal algo-
rithm is a breadth-first search that
loops through the computation graph
to find out directed paths between
the two memory accesses. It is inef-
ficient due to failing to utilize the
locality in the AMT program. For
two tasks that both access a shared
variable, it is highly possible they
have other common variables so that
the race checker will check their
causal ordering multiple times during
the program execution.

In order to reuse the results of previous graph traversal, we store them in a
reachability cache and look up the cache during graph traversal to avoid redun-
dant explorations. This can be implemented by adding cache lookup and cache
update operations to the graph traversal algorithm. If there exists a record in the
cache, the graph traversal terminates immediately. Otherwise, the graph traver-
sal proceeds to check the next enqueued step. This optimized graph traversal
algorithm is shown in Algorithm1.

2.5 Optimization: Depth Filtering

Since the time overhead of graph traversal is dominated by the number of nodes
and edges it accessed, traversing a large computation graph in a brute-force man-
ner is always time-consuming. Every time after accessing a task, the algorithm
will loop through all incoming edges and enqueue connected dependent tasks to
avoid omitting any potential path to the expected destination, which leads to
the inefficiency of graph traversal. In order to mitigate the time overhead, we
introduce a guidance depth to help prune irrelevant tasks when looping through
incoming edges. For any task t, its depth is defined by these two formulas:

– depth(t0) = 0, where t0 is the entry point of the whole program.
– depth(t) = Max(depth(ti)) + 1, where ti is a dependent task of t.



64 L. Yu and V. Sarkar

Data: Computation Graph CG, Reachability Cache cache, Operation
op1, op2

Result: If op1 happens before op2, return true, otherwise return false
1 // Bounded Race Detection
2 if !isBoundedMemory(op2.getMemoryAddress()) then
3 return true

4 end
5 dst ← CG.getStep(op1), src ← CG.getStep(op2), queue ← ∅
6 queue.push back(src)
7 while !queue.empty() do
8 curr ← queue.next(), queue.findNext()
9 if curr.task = dst.task ∧ curr.epoch ≥ dst.epoch then

10 cache.update(src, dst)
11 return true

12 end
13 // Reachability Cache
14 if cache.reachable(curr, dst) then
15 cache.update(src, dst)
16 return true

17 end
18 for prev in curr.incomingEdges do
19 if !queue.contain(prev) then
20 // Depth Filtering
21 if prev.depth >= dst.depth then
22 queue.push back(prev)
23 end
24 end
25 end
26 end
27 return false

Algorithm 1. Revised Graph Traversal
The calculation of depth executes along with the computation graph con-

struction and it does not increase the time complexity. According to the defini-
tion, we can deduce Theorem 1 (Depth-Reachability Theorem) and apply it to
filter tasks.

First we introduce Lemma 1 and prove its correctness. Then we derive The-
orem 1 on the basis of Lemma 1. For simplicity, we assume that all tasks in an
AMT program are indivisible, so that each node in the corresponding computa-
tion graph represents a single task. It is straightforward to extend the theorem
to the step level.

Lemma 1. For two tasks a, b, if these exists a directed edge in the computation
graph from a to b (we denote the edge as a → b), then depth(a) < depth(b).

Proof. We need to consider two cases:



GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 65

– Suppose b is the entry point of the program, then b has no preceding tasks,
which is contrary to the assumption of Lemma 1.

– Suppose b is not the entry point of the program. Then depth(b) =
Max(depth(ti)) + 1, for all predecessors, ti of b (with edges ti → b). So
depth(b) ≥ depth(a) + 1. Hence, the lemma statement is true.

Theorem 1 (Depth-Reachability Theorem). For two tasks ti, tj, if
depth(ti) ≥ depth(tj), then there exists no directed path from ti to tj in the
computation graph.

Proof. We prove Theorem 1 by contradiction. Suppose there exists two tasks a, b
such that depth(a) ≥ depth(b) and there is a path a → t1 → t2 . . . tn → b in the
computation graph. By Lemma 1, we know depth(a) < depth(t1), depth(t1) <
depth(t2) . . . depth(tn) < depth(b). So depth(a) < depth(b), which contradicts
the assumption. Theorem 1 is thus proved by contradiction.

2.6 Optimization: Bounded Race Detection

Apart from the graph traversal, the majority of time and space overhead comes
from the shadow memory. Since GT-Race allows the AMT program to execute in
parallel, all threads have to access shadow memory with proper synchronizations
when they try to record a memory access or get previous memory accesses. These
synchronizations are indispensable for the correctness, but they slow down GT-
Race’s execution.

For better performance and higher accuracy, in GT-Race, we bound the range
of data race detection by programmers’ knowledge. Since programmers have a
full understanding of the AMT program, they are eligible to point out error-
prone shared variables. We add an additional option for GT-Race which allows
programmers to mark these variables before launching GT-Race. GT-Race will
only record memory accesses and carry out data race detection for marked shared
variables and ignore the accesses to other variables.

Line 2 in Algorithm 1 shows how bounded race detection works after cap-
turing a memory access. Before starting a graph traversal, the algorithm first
checks the desired address of the memory access to see whether it falls in the
range of marked variables. If the memory access is to an outside memory location,
the algorithm returns true immediately since programmers assume the accessed
memory location will not be involved in any data race. The memory address
check in line 2 avoids needless graph traversal during the program execution,
which is beneficial for efficiency.

3 Implementation

We have developed a prototype implementation of GT-Race (see Fig. 3 for the
architecture), based on the algorithm in Sect. 2. GT-Race works as a back-end



66 L. Yu and V. Sarkar

tool of Intel Pin1, a dynamic instrumentation framework that monitors the pro-
gram execution and inserts callbacks for certain operations such as construct
calls and memory accesses. These callbacks record parameters of operations at
runtime and pass them to GT-Race. GT-Race will call corresponding modules
to analyze the collected data.

Fig. 3. Prototype architecture

The prototype is designed for
Open Community Runtime (OCR)
[5], an open-source AMT runtime
that supports point-to-point synchro-
nizations. An OCR program con-
sists of three basic objects: (a) Event
Driven Task (EDT) (b) data block
(c) event.

An EDT is the basic execution
unit that performs its computation
asynchronously. It may have depen-
dences on other EDTs and events.
Once all its dependences are satisfied, an EDT can run non-preemptively with-
out being interrupted by other EDTs. A data block is a chunk of consecutive
memory managed by the OCR runtime automatically. It is the only way to
share data among EDTs and may have various access modes (e.g. read-only,
read-write, exclusive write, constant). Although data blocks in read-only and
constant modes are supposed to be data race free, it is still possible to introduce
data races for these blocks since the OCR runtime will not prevent EDTs from
issuing write operations to these data blocks. In order not to miss any data race,
we take all data blocks into consideration when detecting data races. However, it
is also possible to constrain GT-Race so that it only performs data race detection
for a specified subset of data blocks. Event is a synchronization object used to
coordinate the activity of EDTs. The semantics is similar to that of a semaphore
or latch. An EDT linking to an event, e, through its outgoing edges must wait
for the termination of all EDTs linking through e’s incoming edges.

As shown in Fig. 3, the inserted callbacks hide the internal details of OCR
objects from GT-Race. They instead record operations on OCR objects as gen-
eral happens-before relations and memory accesses that GT-Race can handle.
Callbacks tackling API calls are injected into the OCR runtime. They treat both
EDTs and events as tasks (an event can be viewed as a no-op task created solely
for the purpose of synchronization) and dependences as directed edges among
corresponding tasks. Callbacks for memory operations are weaved into the OCR
application. When the application executes memory operations on data blocks,
associated callbacks will convert them into equivalent memory read/write oper-
ations on shared memory locations. The separation of data collection and data
race detection avoids unnecessary modifications to GT-Race when applying it
to a new AMT runtime.

1 https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool


GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 67

4 Performance Evaluation

4.1 Environment and Benchmarks

To evaluate the performance of GT-Race, we carried out several experiments
using the OCR benchmarks. All experiments were conducted on an Intel work-
station with a 24-core Intel Xeon E5-2667 processor and 125 GB of memory,
running 64-bit Ubuntu 15.04. We performed experiments on nine OCR bench-
marks from the OCR app repository2. These benchmarks are either scientific
computing programs or mini-apps derived from real-world applications. All nine
OCR benchmarks were compiled using GCC 4.9.2 with -O3 optimization level,
and executed on top of a customized OCR v1.1 runtime with 24 threads. No
data races were detected in these benchmarks used for performance evaluation,
but we separately tested our tool for correctness with synthetically introduced
data races. Note that the performance of our algorithm is not impacted by the
absence or presence of data races.

Though we compare the technical aspects of our approach with related work
in Sect. 5, we did not find any implementation of related work that could be
used to obtain useful performance comparisons with GT-Race. For example,
direct use of the vector clock approach is not practical for AMT parallelism
because it would require that each task have its own entry in every vector clock.

4.2 Space Overhead of GT-Race

Table 1 contains dynamic statistics for each benchmark, when executed with a
standard input from the OCR repository. Furthermore, the “Memory Usage of
CG” columns show the space overhead of the computation graph with different
storage strategies. We see that the memory space used by the optimized epoch
adjacency list is only 29.20%–37.85% of that used by the unoptimized adjacency
list representation. The improvement in memory usage is due to the implicit
storage of steps and continue edges in the epoch adjacency list. UTS generates
the largest computation graph, which spawns more than 400,000 tasks with
millions of dependences at runtime. The corresponding computation graph is
around 32 MB, which demonstrates the memory efficiency of epoch adjacency
list.

4.3 Performance of GT-Race

Summary of Results. Table 2 lists the uninstrumented execution time and
overhead of data race detection for each benchmark. All timing measurements
are the geometric mean of 10 runs. We use separate columns in Table 2 to analyze
the performance and the effectiveness of different optimizations in GT-Race. All
listed slowdowns are relative to the uninstrumented running times in the “Base
Time” column.

2 https://xstack.exascale-tech.com/git/public/apps.git.

https://xstack.exascale-tech.com/git/public/apps.git


68 L. Yu and V. Sarkar

Table 1. Dynamic benchmark statistics. The first four columns contain the benchmark
name, along with the numbers of tasks, events, and dependences created when execut-
ing the benchmark on a standard input in the OCR repository. The next two columns
give the computation graph size in bytes for the unoptimized case, and the optimized
case using epoch adjacency lists. The last column shows the ratio of the optimized size
to the unoptimized size.

Benchmark Tasks Events Dependences Memory usage of CG (bytes)

Original Epoch adjacency
list

Ratio

Cholesky 222 605 1,101 81,504 30,848 37.85%

FFT 9 9 38 2,560 896 35.00%

Fibonacci 364,179 242,785 1,213,925 82,546,936 29,134,224 35.29%

QuickSort 3,937 7,871 19,678 1,385,360 503,776 36.36%

SmithWaterman 6,401 19,683 51,521 3,511,192 1,241,680 35.36%

UTS 302,014 111,116 1,692,399 104,689,464 33,688,464 32.18%

RSBench 30,033 50 766,540 43,648,232 12,745,968 29.20%

XSBench 36,835 52 898,874 51,222,232 14,972,176 29.23%

LCS 9,817 24,578 74,505 4,997,760 1,742,400 34.86%

Performance of Computation Graph Construction. The “CG” column
reports the overhead of GT-Race when only constructing the computation graph.
The geometric mean overhead is 1.11× which is not significant. Since we utilize
a lock-free data structure to store the computation graph in GT-Race, it reduces
overhead due to unnecessary synchronizations and can also handle a large com-
putation graph efficiently.

Performance of Shadow Memory. The “CG + SM” column shows the over-
head of GT-Race when tracking shadow memory but performing no graph traver-
sals for data race detection. Although the geometric mean overhead is 4.95×,
RSBench has an overhead greater than 10×. Since each instance of shadow mem-
ory has to synchronize concurrent accesses from multiple threads to maintain a
consistent historical record, GT-Race sacrifices some performance for correct-
ness. But the slowdown is acceptable compared to existing work.

Performance of Data Race Detection. The last two “Slowdown” columns
compare the effectiveness of optimizations for graph traversal. With the help of
the reachability cache, GT-Race completed every benchmark’s test in 4 min and
incurred 7.77× slowdown on cache usage. We also list the statistics on the cache
usage in Table 3. The cache miss ratio is less than 2% for all benchmarks except
Fibonacci and UTS. Besides, reachability cache also helps reduce the number
of accessed steps during graph traversal. For all benchmarks except RSBench
and XSBench, the average (arithmetic mean)3 number of accessed steps is much
smaller compared to the size of computation graph.
3 We use geometric mean for ratios, and arithmetic mean for absolute counts such as

accessed steps.



GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 69

Depth filtering further reduces the slowdown of data race detection. For UTS
and RSBench, it reduces the slowdown from 10.22× to 5.50× and 83.19× to
80.86×. For other benchmarks, the improvement is not substantial. Although
FFT sees an increased overhead, the slowdown is close to the version without
depth filtering. The reason for the performance for depth filtering in FFT is that
its computation graph is not large and reachability cache already improves the
performance of graph traversal, which causes the overhead of calculating depths
to overshadow the performance gain.

Table 2. Benchmark results. Columns 4–6 contain slowdowns relative to the base time.

Benchmark Base time
(sec)

Slowdown

CG CG + SM Race detection
(cache only)

Race detection
(cache + depth filtering)

Cholesky 1.66 1.01 1.86 1.88 1.83

FFT 1.58 1.00 2.94 3.08 3.01

Fibonacci 5.54 1.05 1.22 1.31 1.29

QuickSort 1.46 1.02 7.58 7.62 7.73

SmithWaterman 1.59 1.05 8.39 8.89 8.43

UTS 6.29 1.45 3.88 10.22 5.50

RSBench 2.07 1.25 28.10 34.68 34.22

XSBench 2.68 1.20 7.03 83.19 80.86

LCS 1.62 1.03 5.50 6.81 6.71

Geometric mean 1.11 4.95 7.77 7.12

Performance of Bounded Race Detection. We performed another exper-
iment on RSBench and XSBench (the two benchmarks with the largest over-
heads) to evaluate the impact of bounded race detection. During the experiment,
GT-Race only monitored memory accesses and executed data race detection for
a subset of data blocks whose size is smaller than a predefined threshold. For

Fig. 4. Bounded race detection result

Table 3. Cache usage

Benchmark Cache

miss

Cache hit Arith. mean

steps

Cholesky 550 224,510 4

FFT 6 262,144 6

Fibonacci 653,329 849,746 4

Quicksort 19,431 283,366 4

SmithWaterman 25,281 1,452,800 5

UTS 549,166 2,629,321 48

RSBench 30,029 14,876,544 1,743

XSBench 73,632 3,128,693 3,204

LCS 20,480 2,329,707 144



70 L. Yu and V. Sarkar

each threshold, GT-Race tested 10 runs for each benchmark. We utilize this
experiment to roughly evaluate the impact of the number of monitored data
blocks on the slowdown of data race detection.

We list the data in Fig. 4. For both RSBench and XSBench, the slowdown
is small when GT-Race carried out data race detection with a low threshold.
At a certain point, the slowdown increases significantly then stays constant for
a long period. This scenario is because the workload of data race detection is
irregular on different data blocks and the slowdown is dominated by a few shared
variables that are frequently accessed. These results show that input from the
programmer, or perhaps a smart debugger, on which data blocks to monitor can
have a significant impact on the overhead of data race detection.

5 Related Work

Since GT-Race is a graph traversal based dynamic data race detector, we relate
our work to the state-of-art studies in the following areas.

Dynamic Data Race Detection for Multithreaded Programs: Most
dynamic data race detectors are based on vector clock or lockset. FastTrack [6]
is the state-of-art vector clock based race detector. It applies a concise repre-
sentation of vector clock to compress the timestamps of concurrent operations.
Although FastTrack reduces the time overhead of vector clock comparison and
the space overhead of shadow memory, the size of each vector clock is still pro-
portional to the number of threads. Furthermore, FastTrack can only report data
races in the executed thread interleaving.

Eraser [7] is a lockset based lightweight race detector which finds out data
races by the locking discipline. It incurs less runtime overhead to the program
and can predict data races in other possible interleavings, but it may generate a
large amount of false positive. Some work [8] combine lockset with vector clock
to achieve both high accuracy and low overhead. They use lockset to replace
the expensive vector clock when the program issues lock operations, and report
data races when both vector clock and lockset do not prove the correctness of a
memory access. These hybrid race detectors can achieve a good trade-off between
accuracy and performance.

Because the above-mentioned race detectors are designed for general mul-
tithreaded programs, They either cannot handle synchronization constructs in
AMT parallelism, or incur unacceptable time and space overhead due to the
neglect of structural properties in AMT programs.

Dynamic Data Race Detection for AMT Programs: Some data race
detectors are only targeting specific AMT runtimes and utilize the structural
properties of the computation graph to verify AMT programs efficiently. SP-
bags [9] and ALL-SETS [15] utilize the serial-parallel (SP) structure of Cilk
programs to detect data races in amortized bound time and constant space.
ESP-bags [16] is an extension to SP-bags that supports finish construct in async-
finish AMT runtimes. The determinacy race detector in [10] leverages dynamic



GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 71

task reachability graph to handle async-finish AMT runtimes with futures. How-
ever, all these approaches require the program to execute in depth-first order,
which wastes the available hardware parallelism in the underlying platform.
PTRacer [11] is a parallel on-the-fly data race detector for async-finish AMT
runtimes that support locks. It combines SPD3 and ALL-SETS to detect data
races with constant memory space. PTRacer also adds a symbolic diagnosis
phase after the dynamic analysis to predict hidden races at schedule sensitive
branches of the not-taken paths. But PTRacer does not provide any support to
point-to-point synchronization constructs.

Reachability Query for DAGs: GT-Race can be abstracted as conduct-
ing reachability queries on the computation graph to verify the causal order-
ing between concurrent memory accesses. Although reachability query has been
comprehensively studied over decades, existing work is not suitable for GT-Race.
According to the survey presented by [17], state-of-art reachability query algo-
rithms [18–20] compute a label for every node when preprocessing the graph,
and return the reachability between any two nodes by comparing assigned
labels. These algorithms can answer reachability queries efficiently, but they
require an expensive labeling process in advance, which is too time-consuming
for large graphs. In addition, the space overhead of each label is proportional,
or even square to the number of nodes, which will deplete available memory
space quickly. The unacceptable time and space overhead of the labeling process
restrict the usage of reachability query algorithms in GT-Race.

6 Conclusion and Future Work

In this paper, we propose GT-Race, a new graph-traversal based data race detec-
tor for AMT parallelism. It leverages the computation graph data structure,
which encodes the general happens-before structures in AMT programs. GT-
Race executes a graph-traversal based data race detection algorithm for each pair
of concurrent memory accesses. After one execution, GT-Race can report data
races in all possible thread interleavings for the same input. In order to reduce
the time and space complexity for race detection, we also apply a few optimiza-
tions in GT-Race, such as epoch adjacency list to compress the representation
of computation graph, reachability cache and depth filtering to avoid unneces-
sary explorations, and bounded race detection to reduce the range of monitored
memory space. Based on our race detection techniques, we have implemented a
prototype of GT-Race for OCR. The evaluation on a set of open source OCR
benchmarks shows that our tool handles all OCR constructs and incurs accept-
able time and space overhead to the program execution.

GT-Race addresses the challenges of data race detection for AMT programs
mentioned in Sect. 1 as follows (a) The space complexity of the computation
graph is linearly proportional to the number of tasks and dependences, which
makes GT-Race scalable to AMT programs (b) GT-Race detects data races by
using the happens-before relations among tasks, which incurs no false positives
(c) When detecting data races, GT-Race doesn’t require the AMT program to



72 L. Yu and V. Sarkar

execute in sequential order. GT-Race works in parallel, thereby fully utilizing
hardware parallelism for debugging executions as well (d) Since the computation
graph is a general representation of happens-before relations, GT-Race can be
applied to other AMT runtimes beyond OCR.

For future research, we plan to combine some static analysis techniques with
GT-Race to filter out race-free shared variables during dynamic data race detec-
tion. We also plan to further improve the efficiency of graph traversal by learning
the structural properties in the computation graph more comprehensively.

References

1. Pebay, P., Bennett, J.C., et al.: Towards asynchronous many-task in situ data anal-
ysis using legion. In: 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops. IEEE, pp. 1033–1037 (2016)

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55–69 (1996)

3. Chatterjee, S., Tasirlar, S., et al.: Integrating asynchronous task parallelism with
MPI. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Pro-
cessing (IPDPS), pp. 712–725. IEEE (2013)

4. Treichler, S., Bauer, M., Aiken, A.: Realm: an event-based low-level runtime for
distributed memory architectures. In: Proceedings of the 23rd International Con-
ference on Parallel Architectures and Compilation, pp. 263–276. ACM (2014)

5. Mattson, T.G., Cledat, R., et al.: The open community runtime: a runtime system
for extreme scale computing. In: 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–7. IEEE (2016)

6. Stenzel, O.: The Physics of Thin Film Optical Spectra. SSSS, vol. 44, pp. 163–180.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21602-7 8

7. Savage, S., Burrows, M., et al.: Eraser: a dynamic data race detector for multi-
threaded programs. ACM Trans. Comput. Syst. (TOCS) 15(4), 391–411 (1997)

8. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. In: ACM Sigplan
Notices, vol. 38, pp. 167–178. ACM (2003)

9. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs.
Theory Comput. Syst. 32(3), 301–326 (1999)

10. Surendran, R., Sarkar, V.: Dynamic determinacy race detection for task parallelism
with futures. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp.
368–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 23

11. Yoga, A., Nagarakatte, S., Gupta, A.: Parallel data race detection for task parallel
programs with locks. In: Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 833–845. ACM
(2016)

12. Sarkar, V.: Comp 322: fundamentals of parallel programming module 1: paral-
lelism (2017). https://wiki.rice.edu/confluence/download/attachments/4435861/
module1.pdf?version=5&modificationDate=1519055242728&api=v2

13. Tasirlar, S., Sarkar, V.: Data-driven tasks and their implementation. In: Proceed-
ings of the 2011 International Conference on Parallel Processing, ICPP 2011, pp.
652–661, Washington, DC, USA. IEEE Computer Society (2011)

https://doi.org/10.1007/978-3-319-21602-7_8
https://doi.org/10.1007/978-3-319-46982-9_23
https://wiki.rice.edu/confluence/download/attachments/4435861/module1.pdf?version=5&modificationDate=1519055242728&api=v2
https://wiki.rice.edu/confluence/download/attachments/4435861/module1.pdf?version=5&modificationDate=1519055242728&api=v2


GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 73

14. Nethercote, N., Seward, J.: How to shadow every byte of memory used by a pro-
gram. In: Proceedings of the 3rd International Conference on Virtual Execution
Environments, pp. 65–74. ACM (2007)

15. Cheng, G.I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data
races in Cilk programs that use locks. In: Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 298–309. ACM (1998)

16. Raman, R., Zhao, J., et al.: Efficient data race detection for async-finish parallelism.
Form. Methods Syst. Des. 41(3), 321–347 (2012)

17. Wei, H., Yu, J.X., Lu, C., Jin, R.: Reachability querying: an independent permu-
tation labeling approach. Proceed. VLDB Endow. 7(12), 1192–1202 (2014)

18. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: answering graph
reachability queries in constant time. In: 2006 Proceedings of the 22nd Interna-
tional Conference on Data Engineering, p. 75, ICDE 2006. IEEE (2006)

19. Cheng, J., Huang, S., et al.: TF-label: a topological-folding labeling scheme for
reachability querying in a large graph. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pp. 193–204. ACM (2013)

20. Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs.
In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 845–856. ACM (2007)


	GT-Race: Graph Traversal Based Data Race Detection for Asynchronous Many-Task Parallelism
	1 Introduction
	2 GT-Race
	2.1 Computation Graph and Data Races
	2.2 Overview
	2.3 Epoch Adjacency List: A Compressed Representation for Computation Graph
	2.4 Optimization: Reachability Cache
	2.5 Optimization: Depth Filtering
	2.6 Optimization: Bounded Race Detection

	3 Implementation
	4 Performance Evaluation
	4.1 Environment and Benchmarks
	4.2 Space Overhead of GT-Race
	4.3 Performance of GT-Race

	5 Related Work
	6 Conclusion and Future Work
	References




