SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis | 979-8-3503-5554-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/SCW63240.2024.00030

Facilitating Bug Detection for OpenMP Offloading
Applications

Lechen Yu
College of Computing

Feiyang Jin
College of Computing

Vivek Sarkar
College of Computing

Joachim Jenke
IT Center

Georgia Institute of Technology Georgia Institute of Technology RWTH Aachen University Georgia Institute of Technology

Atlanta, USA
lechen.yu@gatech.edu

Atlanta, USA
fjin35 @gatech.edu

Abstract—The paper introduces ARBALEST-VEC, a redesigned
dynamic analysis tool for detecting data inconsistencies in
OpenMP offloading applications, specifically targeting GPU
environments. Building upon the shortcomings of its predecessor,
ARBALEST, the new tool incorporates several improvements.
ARBALEST-VEC is implemented on a more recent version of
LLVM, addressing issues such as inaccurate data movement
modeling and insufficient debugging information in ARBALEST.
It introduces a new OpenMP Tool interface (OMPT) event,
device mem, to accurately capture data movements, thus reducing
runtime overhead and enhancing debugging accuracy. The tool
also leverages additional debug information available in the
LLVM toolchain to generate more detailed and user-friendly
bug reports. Furthermore, ARBALEST-VEC employs a dedicated
shadow memory and vectorized dynamic analysis using SIMD
instructions to improve the performance and precision of data
inconsistency detection. Evaluations demonstrate that ARBALEST-
VEC offers improved accuracy, usability, and performance over
ARBALEST, with lower time overhead and more predictable
memory usage, making it more suitable for real-world OpenMP
programs.

Index Terms—OpenMP, Data Inconsistency, Dynamic Analysis,
SIMD

I. INTRODUCTION

In the past decade, OpenMP has become a popular intra-
node parallel framework. To cater to the general availability
of graph processing units (GPUs), OpenMP has introduced
device directives into the specification. These derivative-
based, hardware-agnostic constructs mitigate the difficulty of
GPU programming. Error-prone programming efforts, such as
calculating the boundary of a parallelized for-loop for each
thread, are delegated to the compiler and OpenMP runtime.
Unfortunately, using device directives cannot avoid all types
of bugs. For example, programming errors in device directives
may result in incorrect data movements between the host and
GPU, and therefore a variable may have inconsistent instances
on different devices [1], [2]. In this paper, we refer to such
errors as data inconsistencies.

There has been a handful of prior work focusing on the
detection of data inconsistencies. ARBALEST [3] is a dynamic
analysis tool built on top of Archer [4], the state-of-the-art
OpenMP race detector. ARBALEST leverages a helpful feature
in LLVM that device directives can be executed on the host
for debugging an OpenMP program. The OpenMP runtime

Atlanta, USA
vsarkar @gatech.edu

Aachen, Germany
jenke @itc.rwth-aachen.de

can execute kernels by a group of dedicated CPU threads
while simulating data movements using memory routines such
as malloc and memcpy. Utilizing this feature, ARBALEST
monitors the execution of an OpenMP program as if it were
CPU-parallelized. ARBALEST maintains a per-Variable State
Machine (VSM) to check the validity of each mapped variable
(host variable mapped to the GPU and accessed in a kernel).
When a read operation from either device tries to access a
mapped variable while the variable does not have a valid value,
ARBALEST reports this suspicious memory access as a data
inconsistency.

However, we found a number of issues after testing AR-
BALEST. First, the original implementation of ARBALEST
is based on LLVM 9 and OpenMP 5.0. Since LLVM 9 is the
first release that supports device directives, the corresponding
implementation of OpenMP is not mature, which may affect
the accuracy of ARBALEST. Additionally, ARBALEST does
not generate enough debugging information for detected data
inconsistencies, making the bug report hard to understand.
All these issues impede applying ARBALEST to real-world
OpenMP programs.

In this paper, we introduce the redesign of ARBALEST,
which is implemented on a more recent release of LLVM and
addresses the aforementioned issues. The new tool, ARBALEST-
VEC, also executes all kernels on the host, leverages the
OpenMP Tool interface (OMPT) to capture the invocation
of OpenMP constructs [5], and dynamically checks the validity
of each mapped variable at byte granularity. During the
dynamic analysis phase, ARBALEST-VEC applies three major
optimizations to improve the quality of data inconsistency
detection, including:

1) accuracy: more accurate data movement modeling,

2) usability: more comprehensive bug report, and

3) performance: dedicated shadow memory and SIMD-
accelerated dynamic analysis.

To model the data movements between the host and the
“virtual” GPU more accurately, ARBALEST-VEC adds a new
OpenMP event into OMPT. OpenMP applies a series of
complex rules for data movements. For example, the run-
time applies a reference-count-based mechanism to determine
redundant data movements, and programmers can overwrite

979-8-3503-5554-3/24/$31.00 ©2024 IEEE 189
DOI 10.1109/SCW63240.2024.00030
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 18,2025 at 10:46:07 UTC from IEEE Xplore. Restrictions apply.

this default behavior using certain device directives. Built-in
OMPT events pass either user-specified data movements in the
source code or low-level memory operations on the GPU to
the tool, none of which directly reveal the data movements
carried out at runtime. Compared to these built-in events used
by ARBALEST, the new event we introduced into OMPT
can reduce the workload involved in correctly modeling the
data movements. Furthermore, ARBALEST-VEC fully utilizes
the improved debug information for OpenMP offloading [6].
This enhanced debug information, introduced in recent LLVM
releases, records the corresponding OpenMP construct and
mapped variable for each data movement. ARBALEST-VEC
retrieves this information at runtime to generate clearer and
more detailed bug reports for identified data inconsistencies,
thereby enhancing the programmer’s ability to understand and
address those bugs quickly.

Apart from the optimizations for accuracy and usability,
ARBALEST-VEC also tries to improve the performance of
data inconsistency detection. ARBALEST-VEC applies SIMD
instructions to accelerate the data inconsistency detection.
A memory access may read/write a number of consecutive
memory locations and render the identical state for these
locations. Using SIMD instructions, ARBALEST- VEC efficiently
processes the states of these contiguous memory locations in
parallel, speeding up the identification of data inconsistencies.
In addition, ARBALEST-VEC also applies a new strategy
for shadow memory. Unlike ARBALEST, which embeds
each variable’s state into Archer’s shadow cell, ARBALEST-
VEC allocates separate shadow memory to store the VSM.
Although this strategy may slightly increase the memory
overhead, it mitigates the interference between Archer’s race
detection and ARBALEST-VEC’s data inconsistency detection.
The evaluation results demonstrate that ARBALEST-VEC offers
lower time overhead than ARBALEST and exhibits more
predictable memory usage. In the SPEC-ACCEL benchmark
suite, ARBALEST-VEC shows a memory overhead ranging from
3.47x to 4.01x, with an average of 3.50x. While ARBALEST
also has a memory overhead of 3.47x, ARBALEST-VEC
maintains a comparable level of memory overhead. Notably,
ARBALEST may incur significant memory overhead on certain
OpenMP benchmarks (e.g., 552.pep), a problem that does not
occur with ARBALEST-VEC.

We have released ARBALEST-VEC on GitHub. The source
code of ARBALEST-VEC can be accessed through the following
link: https://github.com/lechenyu/Arbalest- Vec.

The rest of this paper is organized as follows: Section II
provides an overview of device directives and describes the
probable root causes of data inconsistencies. Section III sheds
light on some shortcomings in ARBALEST’s design. Section IV
introduces the architecture of ARBALEST-VEC, illustrating how
we redesign different modules of dynamic data inconsistency
detection to address ARBALEST’s shortcomings. In Section V,
we present and compare the evaluation results of ARBALEST-
VEC and ARBALEST in terms of time and memory overhead.
Finally, in Section VI, we discuss related prior research and
explore potential future work in data inconsistency detection.”

190

II. BACKGROUND
A. Device Directives

With device directives, programmers can describe a GPU
kernel’s behavior in a holistic manner, rather than explicitly
specifying the computation within each thread. As we illus-
trated in lines 11-16 of Figure 1, programmers can use the
combination of device directives to annotate a for-loop to be
parallelized on the GPU, thereby delegating the error-pone
work partitioning and loop bounds checking to the underlying
runtime. This simplification not only makes the code more
accessible but also reduces the likelihood of bugs associated
with manual control of parallel execution details.

For each host variable accessed in a kernel, OpenMP infers
the necessary data movements using map-types. Programmers
may explicitly specify a variable’s map-type using a map clause;
otherwise, the OpenMP runtime can automatically infer the
map-type using predefined rules. The common map-types are
alloc, to, from, tofrom, release, and delete. The semantics
of these map-types are:
alloc, allocating an uninitialized GPU memory section
for the host variable.
to, transferring the host variable to the GPU,
from, transferring the variable’s value back to the host,
tofrom, a combination of to and from,
release, deallocating the GPU memory section for the
host variable, and
delete, similar to release, but ignoring the reference-
count-based mechanism (to be introduced in following
paragraphs)

Such data movements specified by map clauses are referred to
as data mappings in the OpenMP specification.

For map-types alloc and to, they take effect before
executing the kernel, while for map-types from, release, and
delete, they take effect after the kernel terminates. OpenMP
applies a reference-count-based mechanism to avoid redundant
data movements. For a mapped variable that appears in multiple
map clauses, its map-type is determined when encountering the
first map clause; any subsequent map clauses are ignored by
the runtime.

In Figure 1, both arrays a and b have two associated map
clauses. The runtime tackles the map clauses in line 12 and
13 while ignoring the other two. Therefore, the map-types of
arrays a and b are from and alloc, respectively. This runtime
behavior of map-type deduction can be overwritten by adding
an always modifier. All map clauses marked as “always” take
effect regardless of the reference count maintained by the
runtime.

For a mapped variable without an explicitly declared map-
type, the OpenMP runtime can deduct its map type according
to the variable type. The OpenMP runtime assigns a map-
type of tofrom if the mapped variable is a static array/object.
Otherwise, the runtime tackles it as a scalar variable (e.g.,
int/float/char/bool). The variable’s value is transferred to the
GPU in an implementation-specific manner for subsequent
memory accesses in the kernels, but no data mapping is

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 18,2025 at 10:46:07 UTC from IEEE Xplore. Restrictions apply.

settled for this mapped variable. A common misunderstanding
regarding map-type deduction involves the rules for dynamic
arrays. Due to the difficulty of inferring the array size for
dynamic arrays, the OpenMP runtime tackles a dynamic array
as a pointer, namely a scalar variable. Therefore, if the map-
type is not explicitly specified, the OpenMP runtime transfers
the host pointer instead of the entire array to the GPU.

B. Data Inconsistency and the map Clause

Data inconsistencies indicate that, at least on one device, a
variable has an invalid value, and the value has been accessed
by the program. According to the study of data inconsistencies
in [3], both explicitly specified and implicitly deducted map-
types can be the root causes of data inconsistencies. Pro-
grammers may use a map-type of alloc instead of to for
a variable to be read on the GPU, as the bug presented in
line 13 of Figure 1. With the map-type alloc, the runtime
does not transfer the variable to the GPU before executing
the kernel, rendering the variable uninitialized on the GPU.
Similarly, using alloc instead of from may result in the loss of
computation results produced by the GPU, potentially causing
the host to use stale data for the remaining computations.

Implicit map-type deduction can help avoid data inconsis-
tencies if the mapped variable is a static array. The predefined
rules assign a map-type of tofrom for static arrays. As the
most conservative map-type, it instructs the OpenMP runtime
to always synchronize the values of array elements on different
devices before and after the kernel execution. However, the
predefined rules may not be appropriate for dynamic arrays.
Since the dynamic array is tackled as a pointer, the runtime just
transfers the value of the pointer to the GPU. This unexpected
behavior can cause the kernel to access an invalid address,
potentially leading to a buffer overflow during execution.

Apart from map-types, the incorrect array section in a
map clause can also result in data inconsistencies. In line 13
of Figure 1, the program declares that the first half of array b
should be mapped, while the whole array is accessed on the
GPU (see lines 17 and 18). This programming error causes
the remaining section of array b to have no valid copies on
the GPU, and the reads on the GPU may lead to a buffer
overflow. Sometimes, the buffer overflow can go unnoticed if
the accessed memory location has already been allocated to
other mapped variables. This scenario is quite common when
multiple variables are mapped in a single kernel, making it
difficult to detect and debug manually.

III. ISSUES IN THE ORIGINAL ARBALEST

In this section, we introduce the details of some shortcomings
we found in ARBALEST’s original design. To the best of
our knowledge, ARBALEST is the first dynamic analysis
tool designed for data inconsistencies in OpenMP programs.
ARBALEST executes an OpenMP GPU application as CPU-
parallelized, launching the kernel on the host and simulating
data mapping using host memory routines. As an extension
to Archer, ARBALEST reuses Archer’s shadow memory
implementation, reserving four bits from each shadow cell

191

#define SIZE 1000000

1

2

3 int main() {

4 int *a = new int[SIZE];

5 int *xb = new int[SIZE];

6

7 #pragma omp parallel for

8 for (int i = 0; i < SIZE; i++)

9 b[i] = 1i;

10

1 #pragma omp target data \
12 map (from: al[@:SIZE]) \

map(alloc: b[@:SIZE / 2])
#pragma omp target parallel for \

15 map (from: al[@:SIZE]) \
16 map (to: b[0:SIZE / 21)

17 for (int i = 0; i < SIZE; i++) {
18 alil = b[i];

19 3

20 |}

Fig. 1: OpenMP program exhibiting data inconsistencies in
line 13. To fix this program, the highlighted map clause should
be modified to map(to: b[0:SIZE]).

to record the state of mapped variables. However, since
ARBALEST was developed before LLVM fully incorporated
GPU support for OpenMP offloading, ARBALEST’s design
has several shortcomings.

A. Inaccurate Modeling of Data Movement.

ARBALEST registers callbacks through the OpenMP Tool
interface (OMPT) to capture the invocation of OpenMP
constructs. According to the OpenMP specification, there are
two OMPT events related to data movements, target map
and target data op. Unfortunately, neither of them can
accurately model the carried-out data movements. The OpenMP
runtime issues target map events for user-defined map clauses
and implicitly deducted mapped variables. The occurrence of
target map event is not tied to the reference count, so the
OpenMP runtime might notify dynamic analysis tools about
an ignored map clause, e.g., the one in line 15 of Figure 1.
To filter such map clauses, dynamic analysis tools need to
track each mapped variable’s reference count by themselves,
which may incur additional overhead to program execution.
The other event, target data_op, is designed for memory
operations involving the GPU. Tool developers may believe that
tracking target data op events with flags transfer to
and transfer from may be an alternative solution for data
movements. However, OpenMP also offers device memory
routines that enable programmers to transfer data between the
host and the GPU explicitly. As a result, a target data_ op
event may not indicate the presence of a map clause.

Figure 2 shows the OMPT events to be issued at runtime
when executing the code snippet in Figure 1. We use different
colors to denote OMPT events associated with arrays a and b.
It is obvious that target map events are quite noisy. Dynamic
analysis tools must filter out those no-op target map events
(colored in purple) to accurately track the data movements.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 18,2025 at 10:46:07 UTC from IEEE Xplore. Restrictions apply.

target_data_begin

| target_map, from, a[0: SIZE] ‘ | target_data_op, alloc, a ‘

|target_map, alloc, b[0: SIZEIZ]‘ | target_data_op, alloc, b ‘

target begin

| target_map, from, a[0: SIZE] ‘

| target_map, to, b[0: SIZE/2] ‘

target submit

target_data_op,
memcpy(d_to_h), a

NARNING: ThreadSanitizer: data inconsistency (buffer overflow)
pid=9482) on the target
Read of size 4 at 0x7f936b0a4490 by thread T12:

#0 .omp_outlined._debug__.1 error.cpp:21:12

#1 .omp_outlined. error.cpp:17:3

#2 __kmp_invoke_microtask <null>

#3 .omp_outlined._debug__ error.cpp:17:3

Location is heap block of size 2000000 at 0x7f936aebc000
allocated by main thread:

#0 malloc tsan_interceptors_posix.cpp:667:5

#1 DeviceTy::getTargetPointer(void*, void*, long, void*, bool, bool,
»00l, bool, bool, bool, bool, AsyncinfoTy&, void*) <null>
libomptarget.so.15)

#2 main error.cpp:14:3

#3 __libc_start_main libc-start.c:310

SUMMARY: ThreadSanitizer: data inconsistency (buffer overflow)
arror.cpp:21:12 in .omp_outlined._debug__.1

| target_data_op, release, a ‘

| target_data_op, release, b ‘

’ target_end ‘

’ target_data_end ‘

Fig. 2: OMPT events issued at runtime for Figure 1

Furthermore, using target data op events to track data
movements is also challenging. A single map clause may incur
multiple target data_ op events. Dynamic analysis tools
have to correlate them correctly to analyze the effect of the
map clause.

Another issue related to OMPT is that it lacks events
for global variables. OpenMP programs may use a declare
target construct to map global variables to the GPU. These
constructs take effect when the OpenMP runtime loads the
binary onto the GPU. According to the OpenMP specification,
the declare target construct does not issue any OMPT event.
As a result, dynamic analysis tools may not be able to monitor
data movements for global variables.

B. Insufficient Debug Information

ARBALEST generates its bug report using a customized
template from the LLVM sanitizer framework. The report
includes the call stack and the memory location where the data
inconsistency was detected. After scrutinizing the bug report,
we found the provided debug information is insufficient. Pro-
grammers may determine the location of the data inconsistency
by examining the call stack’s top stack frame, but there might be
multiple map clauses in the same line. Without additional debug
information, figuring out the exact map clause that leads to data
inconsistency is intricate. In open-source OpenMP benchmark
suites like DRACC and SPEC-ACCEL, most kernels contain
more than three map clauses, and programmers often condense
them into a single line for a compact format. Therefore, we

192

Fig. 3: Bug report of detected data inconsistency in Figure 1

infer that locating incorrect map clauses may commonly pose a
challenge when applying ARBALEST to real-world OpenMP
programs.

Figure 3 exhibits the bug report for one of the data
inconsistencies in Figure 1. Although the bug report pinpoints
the location of data inconsistency, little information is related
to the incorrect map clause. The green “memory location”
section only shows the memory access involved in the data
inconsistency and the call stack when the variable is allocated.
Through the limited debug information, programmers can only
locate the target data construct in line 11. Additional effort
is still required to determine the actual root cause of this data
inconsistency, which is the highlighted map clause in line 13.

Apart from locating the map clauses, the debug information
for the memory location is also insufficient. The bug report
template leverages a symbolizer to translate memory locations
into variable names. However, the symbolizer works quite
unstable. When dealing with a dynamic array, it often fails
to retrieve the corresponding name, which diminishes the
effectiveness of the bug report.

C. Coarse-grind Dynamic Analysis

To reduce memory overhead during program execution,
ARBALEST opts to reserve some bits from Archer’s shadow
cell instead of allocating separate shadow memory. This design
choice brings about a drawback: a coarse-grind dynamic
analysis. Since Archer allocates a fixed-size shadow cell for
every eight-byte application memory, ARBALEST can only
check the validity of mapped variables at eight-byte granularity.
For memory accesses to any location within the eight-byte
application memory, ARBALEST treats the effect as impacting
the entire memory section. Although double-precision floating
points and eight-byte integers are widely used in HPC areas,
we also found that many OpenMP programs focus on four-
byte variables. Consequently, coarse-grind variable state and

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 18,2025 at 10:46:07 UTC from IEEE Xplore. Restrictions apply.

typedef enum ompt_device_mem_flag_t {

ompt_device_mem_flag_to = 0x01,
ompt_device_mem_flag_from = 0x02,
ompt_device_mem_flag_alloc = 0x04,
ompt_device_mem_flag_release = 0x08,

= ox10,

ompt_device_mem_flag_disassociate 0x20

} ompt_device_mem_flag_t;

1
2
3
4
S
6 ompt_device_mem_flag_associate
;
8
9

typedef void (*ompt_callback_device_mem_t) (
ompt_data_t *target_task_data,
ompt_data_t *target_data,
unsigned int device_mem_flag,
void xhost_base_addr,
void xhost_addr,
int host_device_num,
void xtarget_addr,
int target_device_num,
size_t bytes,
const void xcodeptr_ra,
const char *var_name

Fig. 4: The declaration of device mem callback

dynamic analysis might produce false positives and negatives
when testing certain OpenMP programs.

IV. ARBALEST-VEC

This section introduces the new tool, ARBALEST-VEC. As
a refined implementation of ARBALEST, we redesigned some
modules when implementing the new tool on top of LLVM 15.
This section focuses on these redesigned modules and explains
how these enhancements address the limitations described
in Section III.

A. Standalone OMPT Implementation

According to the LLVM repository’s commit history, the
OMPT support for device directives is unavailable in LLVM
15. Therefore, we wrote a standalone OMPT implementation
for device directives. In addition, since existing OMPT events
cannot accurately model the effect of map clauses, we designed
a new OMPT event, device mem, to group all corresponding
memory operations related to the same map clause into a single
event.

Figure 4 shows the function signature of the callback, which
is attached to device mem event. Since all conducted memory
operations are recorded using a bitmap device mem flag,
tools no longer need to group these operations by themselves,
thereby mitigating the probability of incorrectly modeling data
movements. Furthermore, device mem events are associated
with those effective map clauses. The runtime guarantees that
whenever a map clause takes effect, a device mem event is
issued to notify the conducted semantics to all connected
tools. Tools no longer need to track the reference count of
each mapped variable, which helps reduce runtime overhead.
Apart from ARBALEST-VEC, device mem event has also been
utilized in other tools [7].

We noticed that the latest LLVM 19 already supports these
offloading-related OMPT events. After examining the imple-
mentation, we found that there still exists missing OMPT events.

193

For example, target, target map and target data op
events associated with the declare target construct. When
OMPT support for device directives becomes fully functional in
the future, we will switch to the built-in OMPT implementation
in LLVM and stop maintaining our own implementation.

B. More Detailed Bug Report

To help programmers understand the root cause of detected
data inconsistencies, we updated the bug report template and
added more debug information related to the memory location.
Compared to previous LLVM releases, LLVM 15 provides
a more convenient way to retrieve the debug information
of a map clause. For each map clause in an OpenMP
program, LLVM embeds the clause’s source code location
and the involved mapped variable into a constant global
object, map_var _info. Along with mapped variables, the
corresponding map _var _info objects are also passed to the
runtime when the OpenMP program invokes a device directive.
We leverage the map__var__info object to help retrieve more
accurate debug information. In ARBALEST-VEC, this object is
stored along with the host and GPU addresses in an optimized
interval-tree. When generating the bug report, ARBALEST-VEC
can query the interval tree to translate memory locations into
corresponding debug information.

Apart from using map_ var _info objects, ARBALEST-VEC
also use other techniques, such as compiler-time instrumenta-
tion, to retrieve more accurate debug information for global
variables and dynamic arrays. Figure 5 shows the revised
bug report ARBALEST-VEC generated. There is a new section
(colored in orange) revealing that the data inconsistency is
encountered on array b, with more detailed information about
the invalid memory access. Compared to the original bug
report in Figure 3, the additional section can help programmers
understand the root cause of identified data inconsistencies
efficiently.

C. Dedicated Shadow Memory and Vectorized Dynamic Anal-
ySis

As extensions to Archer, ARBALEST and ARBALEST-VEC
can detect data races and data inconsistencies simultaneously.
Both of them use shadow memory to track the status of
mapped variables. Unlike ARBALEST, which reserves space
within Archer’s shadow memory, ARBALEST-VEC allocates
a dedicated shadow memory to record the variable state. For
every byte of application memory, ARBALEST-VEC allocates
a one-byte shadow cell to store the variable state, known as
the per-variable state machine (VSM). Additionally, four 32-
byte shadow cells, maintained by the race detection routine
inherited from Archer, are allocated for every eight bytes
of application memory. Consequently, the overall memory
overhead of ARBALEST-VEC is five times the memory usage
of native execution.

Since ARBALEST-VEC has dedicated shadow memory for
data inconsistency detection, it fully vectorizes such dynamic
analysis using SIMD instructions. Figure 6 shows the routine to
check VSMs for a section of application memory. With SIMD

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 18,2025 at 10:46:07 UTC from IEEE Xplore. Restrictions apply.

WARNING: ThreadSanitizer: data inconsistency (buffer overflow)
(pid=9482) on the target
Read of size 4 at 0x7f936b0a4490 by thread T12:
#0 .omp_outlined._debug__.1 error.cpp:21:12
#1 .omp_outlined. error.cpp:17:3
#2 __kmp_invoke_microtask <null>
#3 .omp_outlined._debug___ error.cpp:17:3

Location is heap block of size 2000000 at 0x7f936aebc000

allocated by main thread:

#0 malloc tsan_interceptors_posix.cpp:667:5

#1 DeviceTy::getTargetPointer(void*, void*, long, void*, bool, bool,
bool, bool, bool, bool, bool, AsyncinfoTy&, void*) <null>
(libomptarget.so.15)

#2 main error.cpp:14:3

#3 __libc_start_main libc-start.c:310

SUMMARY: ThreadSanitizer: data inconsistency (buffer overflow)
error.cpp:21:12 in .omp_outlined._debug__.1

Fig. 5: ARBALEST-VEC’s bug report for one of the data
inconsistencies detected in Figure 1

ALWAYS_INLINE USED RawVsmx CheckVsmUtil (uptr addr,
uptr size, u64 vmask) {
2 int range_mask = kVsmCellBitMap >> (kVsmCell -
size);
uptr cell_start =
RawVsm *vp = MemToVsm(cell_start);
uptr offset = addr - cell_start;

3 RoundDown (addr,
4
5
6 range_mask <<= offset;
7
8
9

kVsmCell);

m64 origin = _m_from_int64(LoadVsm8(vp));
m64 mask = _m_from_int64 (vmask);
mé64 result = _mm_cmpeq_pi8(_mm_and_si64(origin,
mask), mask);
rewrite_mask =
error_bytes =
rewrite_mask);
// xor is non-zero => at least one bit is not
the same as the range_mask
if (UNLIKELY(error_bytes)) {
uptr error_start_offset =
error_bytes) - 1;
return vp + error_start_offset;
} else {
return nullptr;

int
1 int

_mm_movemask_pi8(result);
range_mask ° (range_mask &

__builtin_ffs(

18 3
9 |}

Fig. 6: The vectorized dynamic analysis for consecutive
application memory

instructions, the dynamic analysis for data inconsistencies is
converted to a group of bit operations upon the dedicated
shadow memory for VSM, which improves the performance
while achieving fine-grind byte-level dynamic analysis.

V. EVALUATION

In this section, we discuss the evaluations we conducted to
gauge the effectiveness and efficiency of ARBALEST-VEC.

194

TABLE I: Execution time on SPEC-ACCEL in seconds

Benchmark Original ARBALEST ARBALEST-VEC
503.postencil 1.74 39 37
504.polbm 9.80 90 80
514.pomriq 0.68 76 46
552.pep 30 82 66
554.pcg 23 412 389

TABLE II: Memory usage on SPEC-ACCEL in bytes

Benchmark Original ARBALEST ARBALEST-VEC
503.postencil 267,858 823,448 954,518
504.polbm 843,399 2,536,552 2,955,568
514.pomriq 16,075 73,656 63,360
552.pep 1,841,735 9,218,620 7,382,508
554.pcg 2,500,654 8,684,624 8,682,766

A. Experiment Setup

We performed the evaluation on a single-node AMD server
featuring dual 12-core 3.8 GHz Ryzen 9 3900X processors
and 128 GB of memory, running Ubuntu 18.04.3 LTS. To
mitigate the difference in infrastructure, we also ported the
original implementation of ARBALEST to LLVM 15. Both
tools are developed on the same checkout branch of LLVM
15; therefore, we can conduct a fair comparison between them.

For benchmarks, the evaluations utilized a group of open-
source OpenMP benchmarks from SPEC-ACCEL [8], and
all benchmarks are compiled using LLVM 15 with -O3.
Additionally, we selected a suitable input size from the dataset
to ensure that the benchmarks run long enough to minimize
any bias introduced by the underlying operating system.

B. Comparison with ARBALEST on SPEC-ACCEL

Table I shows the execution time on five SPEC-ACCEL
benchmarks. We found that ARBALEST-VEC achieved better
performance on all benchmarks than ARBALEST. The ded-
icated shadow memory helped ARBALEST-VEC to mitigate
the unnecessary interaction between data race detection and
data inconsistencies, which may cause more slowdown due to
the memory access ordering. In addition, SIMD instructions
reduce the number of needed instructions to check a consecutive
memory.

Apart from the execution time, we also compared the memory
usage of the two tools. The detailed memory usage on each
benchmark is listed in Table II. We found that ARBALEST-VEC
offers lower time overhead than ARBALEST and exhibits more
predictable memory usage. In the SPEC-ACCEL benchmark
suite, ARBALEST-VEC shows a memory overhead ranging from
3.47x to 4.01x, with an average of 3.50x. While ARBALEST
also has a memory overhead of 3.47x, ARBALEST-VEC
maintains a comparable level of memory overhead. Notably,
ARBALEST may incur significant memory overhead on certain
OpenMP benchmarks (e.g., 552.pep), a problem that does not
occur with ARBALEST-VEC.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 18,2025 at 10:46:07 UTC from IEEE Xplore. Restrictions apply.

VI. RELATED WORK

Dynamic debugging tools that target memory usage
problems often use shadow memory to store historical access
to certain memory addresses. AddressSanitizer [9] focuses
on detecting out-of-bound access and use-after-free memory
errors. The authors propose a new compact shadow memory
encoding, as well as a customized memory allocator for the
encoding. This efficient shadow mapping enables the tool
to detect memory errors faster than previous similar works.
The original implementation of ThreadSanitizer [10] uses 128
bits for each shadow cell. The most recent version reduces
the size to 64 bits. During instrumentation, ThreadSanitizer
inserts check for each read and write in the program. During
runtime, the happens-before relation between two accesses is
calculated by doing a bit-wise operation of the two shadow
memory cells. MemorySanitizer [11] uses static compiler
instrumentation to detect the use of uninitialized memory
(UUM). It employs a 1-to-1 shadow mapping, as one-bit
shadow memory corresponds to one-bit memory in the program.
Compared with AddressSanitizer and ThreadSanitizer, the
authors need to handle all possible instructions in the LLVM
IR for MemorySanitizer.

The sanitizer tool family provides the foundation for devel-
opers to build upon, many of which are for OpenMP programs.
Archer [4] annotates happens-before relationships in OMPT
callbacks and uses ThreadSanitizer to do race detection. A
similar approach can be found in TSAN-SPD3 [12]. However,
the authors only reuse the instrumentation and shadow memory
parts from ThreadSanitizer. The race detection algorithm is
implemented upon a tree structure. In addition, researchers
also introduced OpenMP sanitizer in 2019 [13], which detects
mapping misuse through static analysis.

VII. CONCLUSION

In this paper, we introduce ARBALEST-VEC, a new tool
designed to detect data inconsistencies in OpenMP offloading
applications. ARBALEST-VEC addresses several shortcomings
of its predecessor, ARBALEST, including improvements in
accuracy, usability, and performance. Evaluation results show
that ARBALEST-VEC incurs lower time overhead and offers
more predictable memory usage compared to ARBALEST.

REFERENCES

[1] L. Yu, J. Protze, O. Hernandez, and V. Sarkar, “A study of memory
anomalies in openmp applications,” in OpenMP: Portable Multi-Level
Parallelism on Modern Systems: 16th International Workshop on OpenMP,
IWOMP 2020, Austin, TX, USA, September 22-24, 2020, Proceedings
16. Springer, 2020, pp. 328-342.

A. Schmitz, J. Protze, L. Yu, S. Schwitanski, and M. S. Miiller,
“Dataraceonaccelerator-a micro-benchmark suite for evaluating correct-
ness tools targeting accelerators,” in European Conference on Parallel
Processing. Springer, 2019, pp. 245-257.

L. Yu, J. Protze, O. Hernandez, and V. Sarkar, “Arbalest: dynamic detec-
tion of data mapping issues in heterogeneous openmp applications,” in
2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2021, pp. 464-474.

S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, D. H. Ahn, I. Laguna,
M. Schulz, G. L. Lee, J. Protze, and M. S. Miiller, “ARCHER: effectively
spotting data races in large OpenMP applications,” in 2016 IEEE
international parallel and distributed processing symposium (IPDPS).
IEEE, 2016, pp. 53-62.

(2]

195

[S] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong, N. Copty,
R. Dietrich, X. Liu, E. Loh, and D. Lorenz, “Ompt: An openmp tools
application programming interface for performance analysis,” in OpenMP
in the Era of Low Power Devices and Accelerators, A. P. Rendell, B. M.
Chapman, and M. S. Miiller, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 171-185.

J. Doerfert, J. Huber, and M. Cornelius, “Advancing openmp offload
debugging capabilities in llvm,” in 50th International Conference on
Parallel Processing Workshop, 2021, pp. 1-8.

F. Jin, A. Tao, L. Yu, and V. Sarkar, “Visualizing correctness issues
in openmp programs,” in Advancing OpenMP for Future Accelerators.
Cham: Springer Nature Switzerland, 2024, pp. 161-175.

“SPEC ACCEL® Benchmark Suite 1.2,” https://www.spec.org/accel/,
2017.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in Presented as part of the
2012 {USENIX} Annual Technical Conference ({USENIX}{ATC} 12),
2012, pp. 309-318.

K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: data race detection
in practice,” in Proceedings of the workshop on binary instrumentation
and applications. ACM, 2009, pp. 62-71.

E. Stepanov and K. Serebryany, “MemorySanitizer: fast detector of
uninitialized memory use in C++,” in 2015 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 1EEE, 2015,
pp. 46-55.

L. Yu, F. Jin, J. Protze, and V. Sarkar, “Leveraging the dynamic
program structure tree to detect data races in openmp programs,” in
2022 IEEE/ACM Sixth International Workshop on Software Correctness
for HPC Applications (Correctness). 1EEE, 2022, pp. 54-62.

P. Barua, J. Shirako, W. Tsang, J. Paudel, W. Chen, and V. Sarkar,
“OMPSan: Static Verification of OpenMP’s Data Mapping constructs,” in
International Workshop on OpenMP. Springer, 2019.

(71

(8

—

[10]

[11]

[12]

[13]

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 18,2025 at 10:46:07 UTC from IEEE Xplore. Restrictions apply.

