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Abstract—OpenMP provides a rich set of constructs to support
multiple paradigms of parallelization, e.g., single program multiple
data (SPMD) and task parallelism. Integrating these disparate
paradigms in a single execution model increases the complexity of
OpenMP, making OpenMP programs prone to concurrency bugs
such as data races. Inspired by the task-oriented execution model
in the OpenMP spec, we extended SPD3, a data race detection
algorithm designed for async-finish task parallelism to support
OpenMP programs. We found that by extending SPD3’s key data
structure, the Dynamic Program Structure Tree (DPST), SPD3 can
support the majority of OpenMP constructs. We have implemented
a prototype, TSan-spd3, on top of Google’s ThreadSanitizer
(TSan). To conduct an apples-to-apples comparison with Archer,
the state-of-the-art dynamic race detector for OpenMP programs,
we compared TSan-spd3 with an Archer implementation that
executes on the same version of TSan. In addition, we evaluated
Archer in two modes, the default mode using the original TSan
and the accelerated mode enabling the use of SIMD instructions
in TSan. The evaluation was conducted on nine benchmarks from
the BOTS and SPEC OMP2012 benchmark suites. The evaluation
results show that in eight out of nine benchmarks TSan-spd3
achieved similar overhead with Archer, while TSan-spd3 can
identify more potential races than Archer.

Index Terms—data race, OpenMP, performance

I. INTRODUCTION

OpenMP is a popular parallel programming framework that
has been widely adopted by HPC application developers [1].
With a rich set of provided constructs, OpenMP allows
programmers to utilize multiple forms of parallelization, e.g.,
single program multiple data (SPMD) parallelism and task
parallelism, in a single application. Integrating disparate parallel
paradigms into OpenMP contributes to generality, but also
increases the difficulty of correctly understanding OpenMP
constructs. Incorrect usage of these constructs may incur data
races during the program execution. As a common concurrency
bug, a data race arises when two concurrent memory accesses
operate on the same memory location and at least one of them
is a write. Data races are notoriously pernicious because they
may render the program output nondeterministic: under the
same input, a parallel program may return inconsistent results
in different runs. In addition, the indeterminacy of the program
execution exacerbates the difficulty of detecting and debugging
data races. Prior studies reveal that manually debugging data
races is burdensome and time-consuming, even for experienced
programmers [2].
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In this paper, we focus on dynamic race detectors, i.e.,
correctness tools that execute along with parallel programs and
accurately report encountered data races at runtime. Although
data races have been well studied by the research community in
past decades [3]-[5], only a handful of dynamic race detectors
are available for OpenMP programs in practice. Archer is the
state-of-the-art OpenMP-aware race detector [6]. It extends
the functionality of Google ThreadSanitizer [7], known as
TSan, by using TSan’s annotation APIs. Upon intercepting
the invocation of an OpenMP construct with the OpenMP
Tool interface (OMPT) [8], Archer analyzes the construct’s
semantics and feeds the corresponding happens-before relation
into TSan using annotation APIs. Archer fully leverages TSan’s
infrastructure, such as the instrumentation pass, vector-clock
storage, and shadow memory, all of which are heavily optimized
for dynamic race detection. Therefore, Archer can incur a
comparatively low overhead to the program execution while
exhibiting a low false positive rate.

The primary deficiency of Archer is the probability of
missing data races (also called false negatives). Since TSan
is designed for multithreaded programs, it does not take task
parallelism into account. TSan uses vector clocks (VCs) [9]
to compare the order of memory accesses, and all memory
accesses from the same thread are always executed sequentially.
Consequently, when two parallel OpenMP tasks are scheduled
on the same thread, TSan cannot identify any data races be-
tween the two tasks. Since Archer reuses TSan’s infrastructure,
it also inherits this deficiency.

The OpenMP specification introduces a task-oriented execu-
tion model to describe the behavior of all supported parallelism.
SPMD parallelism, task parallelism, and heterogeneous paral-
lelism are all described using the notion ‘task’ (see Section II
for more details)!. Inspired by this execution model, we studied
SPD3, a precise race detection algorithm proposed for async-
finish task parallelism [10]. We found that by extending its
crucial data structure, Dynamic Program Structure Tree (DPST),
SPD3 can tackle the majority of OpenMP constructs that are
commonly used to implement SPMD parallelism and task
parallelism in OpenMP programs. Furthermore, SPD3 only

'OpenMP defines task as an instance of executable code and its data
environment that can be scheduled for execution on OpenMP by threads.



records a fixed number of historical memory accesses for each
memory location, which is compatible with TSan’s shadow
memory implementation while incurring no loss of accuracy
and completeness in data race detection (in particular, no false
negatives).

We have built a prototype, TSan-spd3, to compare its
performance with Archer. TSan-spd3 is developed on top of
TSan. We reused TSan’s instrumentation pass and shadow
memory, and replaced the vector-clock-based race detection
algorithm with SPD3. Like Archer, we also use OMPT to
capture the invocation of OpenMP constructs and encode the
corresponding happens-before relation into SPD3’s DPST for
data race detection. We picked up the base TSan implemen-
tation from LLVM 15, which has also integrated the latest
implementation of Archer into its code base. Since both TSan-
spd3 and Archer execute on the same version of TSan, we
are able to conduct an apples-to-apples comparison of these
tools. We have conducted a performance evaluation using nine
benchmarks from BOTS and SPEC OMP2012, and evaluated
Archer in two different modes - the default mode using the
original TSan and the accelerated mode enabling the use of
SIMD instructions in TSan. The evaluation results show that
in eight out of nine benchmarks, TSan-spd3 achieved a similar
time overhead with Archer in both modes.

Some prior work also builds on OpenMP’s task-oriented
execution model and encodes the happens-before relation into
a tree or graph-based data structure to avoid missing data
races [11]-[14]. However, prior work either uses different
race detection algorithms or does not provide a detailed
description of their prototypes’ implementations. To the best
of our knowledge, this work is the first to implement SPD3 in
TSan and to make a fair comparison with Archer.

To summarize, the contributions of this paper are:

« An extension of SPD3 for OpenMP. We extend the original

algorithm to support the semantics of OpenMP constructs.

e A complete evaluation comparing the performance of

Archer and TSan-spd3 under different numbers of threads.

e An exploration of the prospect of graph-based race

detection algorithms for tasks in OpenMP.

o TSan-spd3 is publicly available at https://github.com/

lechenyu/TSan-spd3.

The rest of the paper is organized as follows: Section II
introduces the task-oriented execution model in OpenMP
spec and describes the details of SPD3. Section III analyzes
Archer’s implementation and explains the root causes of missing
data races. In Section IV, we introduce our extension on
SPD3 to support OpenMP constructs, followed by TSan-
spd3‘s implementation in Section V. Section VI illustrates
the evaluation results of TSan-spd3, as well as the comparison
with Archer. Finally in Section VII we briefly conclude with
a discussion of related work.

II. BACKGROUND

In this section, we introduce OpenMP’s task-oriented ex-
ecution model. We also briefly describe the race detection
algorithm used by SPD3.

A. OpenMP Execution Model

OpenMP introduces a unified execution model to delineate
the behavior of all supported parallelization. An OpenMP
program executes sequentially on a CPU until a parallel
construct occurs. For each parallel construct, the underly-
ing OpenMP runtime will assign several worker threads to
parallelize the enclosed code, referred to as a parallel region.
After all worker threads reach the end of the parallel region,
the OpenMP program will resume sequential execution before
encountering another parallel construct.

Task Parallelism. The OpenMP program begins as an initial
task and is surrounded by an implicit parallel region containing
only a single initial thread. During the execution, the initial
task may explicitly fork other tasks using tasking constructs
(e.g., task and taskloop constructs), and programmers can
specify order constraints among tasks using synchronization
constructs (e.g., barrier and taskwait constructs) or depend
clauses. The execution model enforces that each OpenMP task
is bound to the innermost enclosing parallel region, and can
only be executed on those worker threads assigned to the
parallel region. The actual task schedule on worker threads
is determined by the OpenMP runtime, which is agnostic to
programmers. By default, there is a barrier at the end of the
parallel construct. All tasks created in the parallel region must
terminate before the task invoking the parallel construct
continues its execution.

SPMD. In OpenMP, SPMD can be achieved by combining a
parallel construct with a for construct (a parallel-for loop).
Figure 1 illustrates the behavior of such a loop using OpenMP
tasks. When encountering a parallel construct, the OpenMP
runtime will create a group of implicit tasks according to
the number of requested parallelism. The name, implicit task,
distinguishes it from other tasks explicitly created by tasking
constructs. Implicit tasks execute the same parallel region on
those worker threads assigned to the parallel construct. Upon
reaching a for construct in the parallel region, the OpenMP
runtime will distribute the iterations of the for-loop into implicit
tasks. After the termination of all iterations, these implicit tasks
will resume the redundant execution manner for the remaining
part of the parallel region.

Heterogeneous Parallelism. OpenMP supports heteroge-
neous parallelism by device directives (e.g., the target
construct). An OpenMP program can offload a code section
to a connected accelerator to speed up the code section’s
execution. Such parallelization is also interpreted using tasks in
the execution model. Since this paper focuses on data races on
the CPU, the details of heterogeneous parallelism in OpenMP
will be skipped.

B. SPD3 and DPST

Before introducing SPD3, We first explain a few fundamental
notions in async-finish task parallelism. A parallel program
applying async-finish task parallelism consists of two constructs,
async and finish. Each “async{s}” statement creates a new
child task with the body s, which will run asynchronously
with the continuation of the parent task. Each “finish{s}”
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#pragma omp parallel for
num_threads (3)

parallel-begin

implicit-task-begin
ws-loop-begin

ws-loop-iteration-begin
event per iteration

implicit-task-begin
ws-loop-begin

ws-loop-iteration-begin
event per iteration

implicit-task-begin
ws-loop-begin

ws-loop-iteration-begin
event per iteration

ws-loop-end ws-loop-end ws-loop-end

implicit-barrier-begin

implicit-barrier-end
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Fig. 1: OpenMP Events in a Parallel-For Loop

implicit-barrier-end
implicit-task-end

implicit-barrier-end
implicit-task-end

statement blocks the execution of the current task until all
statements in the body s accomplish and all descendant tasks
spawned in s terminate.

In OpenMP, tasking constructs can be treated as async state-

ments, while taskgroup constructs and barriers are finish
statements.
Happens-before check in SPD3. The key data structure
of SPD3 is the Dynamic Program Structure Tree (DPST)
which encodes the happens-before relation among tasks. Each
leaf node in DPST corresponds to a step in the program. A
step is a continuous region of code without any async or
finish statement. On the other hand, each tree node in DPST
corresponds to an async or a finish statement in the program.
To check if a step node s; happens before another step node
S92, SPD3 first looks for the lowest common ancestor (LCA)
of s1, s2. Among the children of LCA, there must be a node ¢
such that ¢ is an ancestor of s;; s; happens before so iff ¢ is
not an async node.

Figure 2 shows the corresponding DPST of the code snippet
in Listing 1. Consecutive sibling step nodes are merged into
a single node for memory efficiency. For example, the root’s
rightmost child has a merged step node representing S1 and S9.
Let us take nodes S1 and S7 to illustrate the happens-before
check. LC'A(S1,S7) is the red async node. The node ¢, in
this case, is S1 itself, which is a step node, so that we can
conclude that step S1 happens before step S7. On the other
hand, for S2 and S3, their LCA is also the red async node,
but this time the node ¢ is S2’s parent and it is an async node.
Therefore, S2 and S3 may happen in parallel.

Shadow memory. For each memory location r, DPST saves
the step nodes of the last write and at most two concurrent
reads after the last write. These two concurrent reads are the
leftmost and rightmost reads to r in DPST, such that other

1 #pragma omp num_threads (3){
2 S1

3 #pragma omp

4 {

5 #pragma omp {S2}

6 S3

7 #pragma omp

8 S4

9 #pragma omp

10 {

1 S5

12 #pragma omp {sS6}
13 S7

14 }

15 S8

16 }

17 S9

18 }

Listing 1: An OpenMP Program Applying Task Parallelism

parallel
num_threads(3)
implicit
task

implicit task implicit
‘master

TN

| Asyne Node (
S
{ /" Wait Node O Step Node

Fig. 2: DPST generated from Listing 1. The text in each node
describes the associated OpenMP constructs or statements.

) Finish Node

concurrent reads to r are within the subtree formed by the step
nodes of the two reads and their LCA.

When a step s performs a write, SPD3 checks if the stored
write and reads happen before s. If no race is detected, SPD3
will update the stored write and empty the two slots for reads.

When a step s performs a read, SPD3 checks if the stored
write happens before s. If no race is detected, SPD3 will save
it into one of the two read slots. If all slots are full, DPST will
check if the new read can replace the leftmost or rightmost read
and perform the replacement if the answer is yes; otherwise,
the new read will be discarded.

The combination of the last write and two reads in each
shadow memory location guarantees the precision and com-
pleteness of SPD3. With a given input, SPD3 can find out all
data races after executing the program once, and it requires a
fixed-size shadow memory to store historical memory accesses.

III. DISCUSSION: ARCHER AND ITS CORRECTNESS

Before presenting the experimental results, we discuss several
design choices made by TSan, the underlying platform that
Archer is built on. In short, these choices reduce Archer’s time
and memory overhead but sacrifice the completeness in data
race detection.



A. How does TSan detect data races

TSan is a vector-clock-based race detector. A vector clock
is essentially a vector of size n, where n equals the number
of threads in the program. Each thread has a unique index,
which indicates its entry position in the vector clock. When
the program starts, each thread ¢ will create a vector clock C
in its local memory (so there are n vector clocks in total in
the program), and all entries are initialized to zero. A thread
updates values in the local vector clock when it performs a
thread creation or synchronization event.

Happens-before check. Consider a thread ¢ and its local
vector clock Cy. For any other thread u, the clock entry C(u)
indicates the clock for the last operation of thread u that
happens before the current operation of thread .

Shadow memory. To improve the efficiency of locating shadow
memory, TSan implements a fixed-size consecutive shadow
memory for application memory sections. For each memory
location, the start address of its shadow cell can be quickly
retrieved by a handful of pointer arithmetic operations. By
default, every 64 bytes of application memory is mapped to
a shadow memory cell, and each cell has four slots to store
memory accesses. A common case is that TSan saves the last
write and three concurrent reads after the last write in a shadow
cell. When the cell is full and a new concurrent read occurs,
TSan will randomly clear a slot to store the new access. The
information saved for each memory access is the thread id «
and vector clock entry Cy,(u).

When a thread ¢ performs a write, TSan checks if the stored
write and reads happen before ¢. If no race is detected, TSan
will update the stored write and empty the remaining three
slots. When a thread ¢ performs a read, TSan checks if the
stored write happens before ¢. If no race is detected, TSan will
save it to one of the three read slots.

B. Problem 1: missing races due to runtime scheduling

One key issue with Archer is that it only records synchro-
nization events for each thread and barely considers other
parallel information. For OpenMP, however, the relationship
between tasks and threads is complex and needs extra care
when carrying out data race detection.

A task in OpenMP packs some work to be done. A thread
only executes a task if the runtime assigns the task to the
thread. The challenge emerges when two concurrent tasks are
assigned to the same thread at runtime.

Listing 2 presents an example from [15]. In the main function,
the code snippet explicitly spawns three tasks which will be
launched on the initial thread. The two tasks we are interested
in here are the outer task created in line 6 and the inner
task created in line 8. Inside these two tasks, line 10 and
line 14 do not have a happens-before relation between them.
These two lines can run asynchronously, and they both write
to variable ¢p. In this example, it is safe to do so because tp
is threadprivate (copied by value inside each thread). If we
remove this constraint, there is a data race between line 10
and line 14.

int tp;
#pragma omp threadprivate(tp)
int var;

1
2

3

4

s |int main(){
6 #pragma omp
7

8

9

{
#pragma omp
{
10 tp = 1;
1 #pragma omp {}
12 var = tp;
13 }
14 tp=2;
15 }
16
17 return 0;
18 |}

Listing 2: Example from DataRaceBench (accessible on Github)

One valid execution trace for Listing 2 is lines 10, 12, and 14.
When the execution comes to line 14, the thread performs a
write, and Archer searches in the shadow memory to check
which thread has accessed the variable. Archer will find that the
previous write is also performed by this thread, thus reporting
no race. In our experiment, Archer fails to find this race in
some runs, which confirms our analysis.

Compared with Archer, SPD3 stores information on a task-
based strategy. The inner and outer tasks will always be two
distinct async nodes in DPST, disregarding the specific task
schedule. In such a manner, SPD3 is guaranteed to report this
race in all valid executions of this program. In our experiment,
SPD3 always reports this race correctly, regardless of the
number of threads and the task schedule. The complete result
of the effectiveness comparison using DataRaceBench can be
found at https://github.com/lechenyu/TSan-spd3.

C. Problem 2: missing races due to fixed-size shadow cell

For each memory location r, Archer only saves four most
recent accesses, among which one is the last write and the rest
are concurrent reads issued after the write. If a fourth read
occurs, Archer will randomly eject one read from the slot to
save the new read. This displacement mechanism may result
in false negatives because the next write may be racy with the
ejected read; in such case, Archer will miss the data race since
the read was already removed from the shadow memory.

Saving all concurrent reads since the last write can fix this
problem for Archer but hurt its performance. This fix may
affect both the time and memory overhead.

1) Time overhead: at the time of a write, Archer will need
to check races with at most n previous reads, where n
is the number of concurrent reads since the last write. In
the worst case, the time complexity of checking a write
is linear to the number of threads.

Memory overhead: at present, Archer implements a fixed-
size shadow memory. Archer limits each shadow cell to
save four memory accesses, each with size x metadata (4
or 8 bytes). Assuming y memory locations are accessed

2)
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at runtime, the total size of shadow memory is 4 * x * y.
Nonetheless, once Archer removes the restriction of
storing four accesses in each shadow cell, fixed-size
shadow memory will no longer be feasible. The memory
overhead, not surprisingly, will skyrocket.

In conclusion, if Archer decides to keep full access history
instead of four accesses for each memory location, the time
and memory overheads will escalate in scale. On the contrary,
SPD3 only needs to save one write and two reads. The three
stored memory accesses are sufficient to ensure precise race
detection.

IV. SPD3 IN OPENMP

We now describe how we build SPD3 for OpenMP tasking
features. As mentioned, SPD3 was initially designed for async-
finish parallelism; some OpenMP constructs can be directly
transformed while others require additional adaptation. Table I
shows a summary of OpenMP constructs. The v' symbol
means SPD3 can directly tackle this construct; the v'* symbol
means the construct is supported but needs modification to
the original DPST construction; the X symbol means SPD3
cannot tackle the construct with the original happens-before
check on DPST. We briefly explain each construct’s expected
behavior in OpenMP and how we model its happens-before
relation using DPST:

e parallel: a parallel region generates certain number of
tasks and has an implicit barrier at the end. This can be
modeled as starting a new finish statement with a certain
number of async statements in it.

o task: a task construct generates an explicit task. This
can be modeled directly as an async statement.

o taskwait: a taskwait construct makes the current task
wait for the completion of previously generated child
tasks. The effect of taskwait is not recursive: the current
task does not wait for descendants of child tasks. To
handle taskwait in DPST, we insert a special wait node
as a child of the current task. Each child keeps track of
the preceding wait node. In the happens-before check,
if there exists a wait node between the two step nodes,
we can conclude that the node to the left of the wait
node must happen before the node to the right; otherwise,
the happens-before check should examine the LCA to
determine the happens-before relation.

o taskgroup: a taskgroup construct makes the current
task wait for the completion of its child tasks and their
descendants. This can be modeled as starting a finish
statement.

e barrier: a barrier indicates all threads in the parallel
region should reach it before any thread can continue. We
only consider the conditions that either all threads hit the
barrier or none hit it. Under this assumption, a barrier can
be treated as the end of the current parallel region and
the start of a new parallel region.

o masked/master: these constructs specify that a subset of
threads should execute the enclosed code section. Neither

TABLE I: Key OpenMP Constructs Supported by SPD3

OpenMP construct | Supported?
parallel v
for v
task v
taskwait e
taskgroup v
masked/master v
single Ve
barrier Ve
depend X
critical X
device directives X

of them incur additional happens-before relation into the
program.

e single: a single construct indicates only one thread
should execute the enclosed code region, and other threads
cannot proceed unless a nowait clause is specified. A
single construct can be interpreted as a combination of
masked and barrier.

Our tool currently does not support depend, critical, and
other lock-based synchronization in OpenMP. The reason is
that these constructs cannot be integrated into SPD3 without
adding special edges that connect arbitrary nodes in the tree. To
tackle critical and lock-based synchronization, an alternative
race detection method is combining SPD3 with the Lockset
algorithm [16]. Each task maintains a lockset to record acquired
locks, and the lockset will be copied into the shadow cell when
the task issues a memory access. During the happens-before
check, if SPD3 returns that there exists no happens-before
relation between the two steps in the DPST, the race detection
method will additionally check the intersection of the two
steps’ locksets. If the intersection is not empty, then at least
one common lock protects the accessed memory location, and
thus the two steps are properly ordered. Otherwise, the two
steps may happen in parallel, and the race detection method
should report a data race.

Currently, TSan-spd3 does not support device directives since
the memory space on the other device is not visible to the host.
One exception is specifying the OpenMP offloading target to
x86 64-pc-linux-gnu, which indicates that all target regions
will be launched on the host, and data transfer will be simulated
using memcpy. The x86 64-pc-linux-gnu target triple is
designed to help programmers debug OpenMP applications
utilizing device offloading. Since all memory regions reside
in the same memory space on the host, TSan-spd3 can tackle
such applications as regular CPU applications and identify data
races in target regions.

Figure 2 illustrates several transformations discussed above.
The top finish node corresponds to the parallel construct. Three
threads execute the parallel region, so we insert three async
nodes below the top finish. All three threads execute S1. Two
worker threads do not execute the master region, so their next
statement is S9. S1 and S9 can be combined into a single
step node because no other OpenMP constructs exist between
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The async node in red indicates the node executes in the
master thread, and its children consist of all statements from
line 2 to line 17. The wait node corresponds to the taskwait
construct in line 7. It helps us to know that every step on its
right-hand side (54, S5, 56, S7, and the node associated with
S8, S9) must wait for the completion of S2, while S3 can
still run in parallel with S2.

V. IMPLEMENTATION

TSan-spd3 reuses TSan’s instrumentation pass and shadow
memory, while replacing TSan’s vector clock implementation
with DPST (see Figure 3 for TSan-spd3’s architecture). Like
Archer, TSan-spd3 also utilizes OMPT [8] to intercept invoca-
tions of OpenMP constructs, and OMPT provides an extensive
interface for registering callbacks to OpenMP events. Upon an
event of interest, our OMPT library will trigger the correlated
callback to update DPST in TSan.

To correlate DPST with the stored memory accesses in the
shadow memory, we add a field to the thread-local ThreadState
struct that TSan maintains. The field saves a task’s step node
which is executing in the current thread. When a thread accesses
a memory location, TSan-spd3 obtains the current step node
and saves the information into the shadow cell.

When modifying the encoding of shadow cells for TSan-
spd3, our first attempt was to save the step node pointer (64
bits) directly to each slot in the shadow memory. However,
the new TSan implementation using SIMD instructions only
assigns 32 bits for each slot in the shadow cell (22 bits are
dedicated to the vector clock epoch). Considering the 32-bit
size is hard-coded and cannot be easily changed, we keep
the size unchanged but instead give each step node a 30-bit
unique index. As a result, the step index of memory access
can fit into a 32-bit slot. The remaining 2 bits in the slot
are used to mark atomic operation and memory deallocation.
In addition, each index is also the key when retrieving the
corresponding step node. TSan-spd3 uses a lock-free global
concurrency vector to store step nodes, which is created at the
beginning of TSan-spd3’s execution. A step index records the
corresponding node’s position in the concurrency vector so
that the step node can be located in constant time.

VI. EVALUATION

A. Experiment Setup

We conducted the evaluation on a single-node AMD server.
It has two 12-core 3.8 GHz Ryzen9 3900X processors and 32
GB memory, running Ubuntu 18.04.3 LTS. TSan-spd3, Archer
and all benchmarks are compiled by Clang/LLVM 15 using
-O3 optimization.

For Archer, we evaluated its performance in two modes. The
default mode invokes the original TSan, which uses a for-loop
to iterate all four slots in the shadow cell and carry out vector
clock comparison sequentially. The accelerated mode leverages
a new implementation of TSan in LLVM 15. It parallelizes
the vector clock comparison and shadow cell load/store using
128-bit SIMD instructions from the SSE2 instruction set. In
addition, the new TSan implementation also compresses the
size of each slot from 64 bits to 32 bits to load/store the whole
shadow cell with a single SIMD instruction.

B. Benchmarks

For the evaluation, we picked up nine benchmarks from
two open-sourced benchmark suites: BOTS 1.1 [17] and SPEC
OMP2012 1.1 [18]. For BOTS, we examined each benchmark
in the folder “omp-tasks”, and there were seven benchmarks we
could compile and run without any errors by Clang/LLVM 15
(fft, fib, health, nqueens, sort, strassen, uts). In SPEC OMP2012,
there are three benchmarks using OpenMP tasking constructs:
botsalgn, botsspar and kdtree. However, the input set provided
for kdtree is too small. Even with the ref input set, kdtree’s
execution time is less than one second. To avoid bias from the
underlying operating system, we decided to skip kdtree in the
evaluation. Furthermore, the other two benchmarks, botsalgn
and botsspar, are essentially ported from BOTS using OpenMP.

In the following paragraph, we briefly describe the func-
tionality of the nine benchmarks. In addition, we also list the
structure information of each benchmark in Table II. Column
‘H’ indicates the height of DPST, and the following four
columns show the number of wait nodes, finish nodes, async
nodes, and step nodes in the constructed DPST.

o fft: computes a Fast Fourier Transformation of a
6,000,000*%6,000,000 matrix.

« fib: computes the 35th Fibonacci number.

« health: simulates the Colombian health care system; we
estimate the running time for the medium model input
file given in the source.

« nqueens: finds solution to the n-queens problem of input
13.

e sort: sorts an array of size 200,000,000 by a mixture of
sorting algorithms.

« strassen: multiplies two matrices of size 4096 * 4096
using the Strassen algorithm with block size 64.

« uts: conducts an unbalanced tree search and we use the
provided test.input as its input.

« botsalgn: aligns all protein sequences from an input
file against every other sequence using the Myers and



Bench  H  NGc  Node Node  Node
fft 22 19,604,368 2 28,808,579 77,221,530
fib 37 14,930,351 1 29,860,723 74,651,800
health 7 17,515,985 1 17,515,626 52,547,240
nqueens 16 4,601,178 1 59,815,326 124,231,831
sort 20 1,157,801 1 2,490,380 6,138,563
strassen 10 19,608 1 137,279 294,169
uts 1,576 4,112,897 1 4,112,920 12,338,741
botsalgn 4 0 1 2,312 4,626
botsspar 4 300 1 292,547 585,398

TABLE II: Program Structure Information

Miller algorithm. We use the training size “100 sequences”
provided in the benchmark.

« botsspar: computes the LU decomposition of a sparse
matrix; the parameters we select for matrix size and
submatrix size are 150 and 50.

C. Performance Comparison - Execution Time

In total, we conducted three groups of experiments using
8, 16, and 24 threads. We set the number of threads by the
environment variable OMP_NUM_THREADS. We executed the
nine benchmarks for each tool and thread number setting five
times, then calculated the arithmetic mean of execution time
and memory usage.

The execution time with 8, 16, and 24 threads are illustrated
in Figure 4, Figure 5, and Figure 6, respectively. The vertical
axis uses a base-10 log scale. “Base” denotes the original
execution time, “Archer-simd” and “Archer” denotes the
execution time of Archer with and without SIMD acceleration,
and “TSan-spd3” denotes the execution time of our prototype.
With the increase in the number of threads, the execution time
reduces in most benchmarks, but the slowdown incurred by
data race detection may increase. We observed that TSan-spd3
achieved similar performance with Archer in the majority of
the nine benchmarks. In strassen, TSan-spd3 even used less
time than Archer to accomplish data race detection. However,
we also observed that in uts, TSan-spd3 is much slower than
Archer. TSan-spd3 incurred a 100x slowdown, while Archer’s
slowdown was less than 10x. Table II shows that the DPST
constructed for uts has an unusual height of 1576. Since the
height of DPST dominates the time complexity of SPD3, it
is reasonable that TSan-spd3 resulted in a higher slowdown
than Archer. This example demonstrates that SPD3 may not
perform well on all OpenMP programs. In the future, we may
try to apply other techniques, e.g., static analysis, to further
reduce the overhead of SPD3 for those OpenMP programs
which construct a deep DPST.

D. Performance Comparison - Memory Usage

Figure 7 illustrates the memory usage with 24 threads. We
omit the results with 8 and 16 threads because we found the
number of threads has little effect on the memory usage of
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Bench DPST Size (GB)
fft 8.42
fib 8.01
health 5.87
nqueens 12.64
sort 0.65
strassen 0.03
uts 1.37
botsalgn 0.0004
botsspar 0.05

TABLE III: DPST Memory Usage

TSan-spd3 and Archer. As a prototype, we have not optimized
the storage of DPST for TSan-spd3. So we expect that the
shadow memory usage shall be close to Archer, while the
DPST may occupy a large amount of memory space.

The results in Figure 7 reveal that TSan-spd3 requested
much more memory than Archer. Combined Figure 7 with the
statistics on DPST sizes in Table III, we can conclude that
the majority of TSan-spd3’s memory usage results from the
DPST or the preallocated concurrency vector to store DPST’s
step nodes. TSan-spd3 allocates a large concurrency vector to

store DPST’s step nodes before running the OpenMP programs.

To ensure the concurrency vector has enough space for all
nine benchmarks, we currently set the size of the concurrency
vector to 200,000,000. Because each step node requires 72
bytes in memory space, the overall size of the concurrency
vector is 13.41 GB. For benchmarks creating a small DPST
such as sort, strassen, spar, and algn, the overall memory
usage minuses the concurrency vector size is similar to or even
smaller than Archer‘s memory usage. For benchmarks creating
a large DPST such as fib, fft, nqueens, the memory usage is
dominated by DPST and the concurrency vector, in which the
shadow memory only occupies a small portion of the overall
memory usage.

There are a few ways to reduce the memory usage of
TSan-spd3. First, the concurrency vector’s size is configurable.
Programmers can set it to a reasonable size according to
an estimate of DPST size. Such an estimate can be easily
acquired by an OMPT tool which counts the number of tasking
and synchronization constructs during the execution. We will
also start optimizing TSan-spd3’s memory usage by removing
unnecessary fields in the tree nodes and step nodes of DPST.

VII. RELATED WORK

Race detection for task parallelism has been well studied.
Labeling techniques have also been used in past work on race
detection for task parallelism. This approach enables happens-
before check between two nodes by comparing two labels.
Mellor-Crummey introduced the Offset-Span [19] algorithm as
one such approach, in which the length of the label attached
to each task can grow as large as the depth of nested fork
structures. The SP-Bags [20] structure devised by Feng and
Leiserson, and the ESP-Bags [21] introduced by Raman et
al. are also examples of using labeling to record the happens-
before relation for a task-parallel program.

There has been a long history of dynamic race detection
algorithms and tools based on vector clocks [7], [22], [23]. A
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major advantage of the vector clock approach is that it can be
applied to parallel programs with arbitrary parallel constructs,
including locks and transactions. However, its major limitation
when applied to task-parallel programs is that it can only
provide guarantees on a per-schedule (rather than per-input)
basis since it is not practical for vector clock sizes to be
proportional to the number of active tasks.

VIII. CONCLUSION

In this paper, we extend SPD3 to support OpenMP programs.
We built a prototype TSan-spd3 on top of TSan and conducted
an apples-to-apples comparison with Archer. The evaluation on
nine open-sourced benchmarks shows that TSan-spd3 achieved
a similar overhead to the program execution compared to
Archer, while avoiding missing data races at runtime.

For future research, we will take depend clause into account.
We plan to extend SPD3 further to support point-to-point
synchronization in OpenMP programs.
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